Skip to main content

A Riemannian Geometry in the \(q\)-Exponential Banach Manifold Induced by \(q\)-Divergences

  • Chapter
  • First Online:
  • 1745 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

In this chapter we consider a deformation of the nonparametric exponential statistical models, using the Tsalli’s deformed exponentials, to construct a Banach manifold modelled on spaces of essentially bounded random variables. As a result of the construction, this manifold recovers the exponential manifold given by Pistone and Sempi up to continuous embeddings on the modeling space. The \(q\)-divergence functional plays two important roles on the manifold; on one hand, the coordinate mappings are in terms of the \(q\)-divergence functional; on the other hand, this functional induces a Riemannian geometry for which the Amari’s \(\alpha \)-connections and the Levi-Civita connections appears as special cases of the \(q\)-connections induced, \(\bigtriangledown ^{(q)}\). The main result is the flatness (zero curvature) of the manifold.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amari, S.: Differential-Geometrical Methods in Statistics. Springer, New York (1985)

    Google Scholar 

  2. Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, RI: Providence (2000) (Translated from the 1993 Japanese original by Daishi Harada)

    Google Scholar 

  3. Amari, S., Ohara, A.: Geometry of \(q\)-exponential family of probability distributions. Entropy 13, 1170–85 (2011)

    Article  MathSciNet  Google Scholar 

  4. Borges, E.P.: Manifestaões dinâmicas e termodinâmicas de sistemas não-extensivos. Tese de Dutorado, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (2004)

    Google Scholar 

  5. Cena, A., Pistone, G.: Exponential statistical manifold. Ann. Inst. Stat. Math. 59, 27–56 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dawid, A.P.: On the conceptsof sufficiency and ancillarity in the presence of nuisance parameters. J. Roy. Stat. Soc. B 37, 248–258 (1975)

    Google Scholar 

  7. Efron, B.: Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Stat. 3, 1189–242 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eguchi, S.: Second order efficiency of minimum coontrast estimator in a curved exponential family. Ann. Stat. 11, 793–03 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Furuichi, S.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gibilisco, P., Pistone, G.: Connections on non-parametric statistical manifolds by Orlicz space geometry. Inf. Dim. Anal. Quantum Probab. Relat. Top. 1, 325–47 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. A 186, 453–61 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kadets, M.I., Kadets, V.M.: Series in Banach spaces. In: Conditional and Undconditional Convergence. Birkaaauser Verlang, Basel (1997) (Traslated for the Russian by Andrei Iacob)

    Google Scholar 

  13. Kulback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  Google Scholar 

  14. Loaiza, G., Quiceno, H.: A Riemannian geometry in the \(q\)-exponential Banach manifold induced by \(q\)-divergences. Geometric science of information, In: Proceedings of First International Conference on GSI 2013, pp. 737–742. Springer, Paris (2013)

    Google Scholar 

  15. Loaiza, G., Quiceno, H.R.: A \(q\)-exponential statistical Banach manifold. J. Math. Anal. Appl. 398, 446–6 (2013)

    Article  MathSciNet  Google Scholar 

  16. Naudts, J.: The \(q\)-exponential family in statistical physics. J. Phys. Conf. Ser. 201, 012003 (2010)

    Google Scholar 

  17. Pistone, G.: k-exponential models from the geometrical viewpoint. Eur. Phys. J. B 70, 29–37 (2009)

    Google Scholar 

  18. Pistone, G., Rogantin, M.-P.: The exponential statistical manifold: Parameters, orthogonality and space transformations. Bernoulli 4, 721–760 (1999)

    Google Scholar 

  19. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23(5), 1543–1561 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rao, C.R: Information and accuracy attainable in estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)

    Google Scholar 

  21. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, J.: Referential duality and representational duality on statistical manifolds. In: Proceedings of the 2nd International Symposium on Information Geometry and its Applications, pp. 58–67, Tokyo, (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor R. Quiceno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quiceno, H.R., Loaiza, G.I., Arango, J.C. (2014). A Riemannian Geometry in the \(q\)-Exponential Banach Manifold Induced by \(q\)-Divergences. In: Nielsen, F. (eds) Geometric Theory of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05317-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05317-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05316-5

  • Online ISBN: 978-3-319-05317-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics