Skip to main content

Free Vibrations

  • Chapter
  • First Online:
Strongly Nonlinear Oscillators

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 2076 Accesses

Abstract

In this chapter the free vibration of the oscillator with pure nonlinearity (2.1) and small additional forces is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belendez, A., Pascual, C., Gallego, S., Ortufio, M., & Neipp, C. (2007). Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x^{1/3}\) force nonlinear oscillator. Physica Letters A, 371, 421–426.

    Article  ADS  MATH  Google Scholar 

  • Belhaq, M., & Lakrad, F. (2000a). On the elliptic harmonic balance method for mixed parity non-linear oscillators. Journal of Sound and Vibration, 233, 935–937.

    Google Scholar 

  • Belhaq, M., & Lakrad, F. (2000b). The elliptic multiple scales method for a class of autonomous strongly non-linear oscillators. Journal of Sound and Vibration, 234, 547–553.

    Google Scholar 

  • Belhaq, M., & Lakrad, F. (2000c). Prediction of homoclinic bifurcation: the elliptic averaging method. Chaos, Solitons and Fractals, 11, 2251–2258.

    Google Scholar 

  • Bogolubov, N. N., & Mitropolski, J. A. (1974). Asimptoticheskie metodi v teorii nelinejnih kolebanij. Moscow: Nauka.

    MATH  Google Scholar 

  • Byrd, P. F., & Friedman, D. (1954). Handbook of elliptic integrals for engineers and physicists. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Cheung, Y. K., Chen, S. H., & Lau, S. L. (1991). A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators. International Journal of Non-Linear Mechanics, 26, 367–378.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Coppola, V. T., & Rand, R. H. (1990). Averaging using elliptic functions: Approximation of limit cycles. Acta Mechanica, 81, 125–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Cveticanin, L., & Pogany, T. (2012). Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics, 649050, 20. doi:10.1155/2012/649050.2012.

  • Cveticanin, L. (2000). Vibrations in a parametrically excited system. Journal of Sound and Vibration, 229, 245–271.

    Article  ADS  Google Scholar 

  • Cveticanin, L. (2006). Homotopy-perturbation method for pure non-linear differential equation. Chaos, Solitons and Fractals, 30, 1221–1230.

    Article  ADS  MATH  Google Scholar 

  • Cveticanin, L. (2009). Oscillator with fraction order restoring force. Journal of Sound and Vibration, 320, 1064–1077.

    Article  ADS  Google Scholar 

  • Drogomirecka, H. T. (1997). Integrating a special Ateb-function. Visnik Lvivskogo Universitetu. Serija mehaniko-matematichna, 46, 108–110. (in Ukrainian).

    Google Scholar 

  • He, J. H. (2000). A new perturbation technique which is also valid for large parameters. Journal of Sound and Vibration, 229, 1257–1263.

    Google Scholar 

  • He, J. H. (2001a). Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations Part III: Double series expansion. International Journal of Nonlinear Sciences and Numerical Simulation, 2, 317–320.

    Google Scholar 

  • He, J. H. (2001b). Bookkeeping parameter in perturbation methods. International Journal of Nonlinear Sciences and Numerical Simulation, 2, 257–264.

    Google Scholar 

  • He, J. H. (2002a). Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations Part I: Expansion of a constant. International Journal of Non-Linear Mechanics, 37, 309–314.

    Google Scholar 

  • He, J. H. (2002b). Modified Lindstedt-Poincaré methods for some strongly non-linear oscillations Part II: A new transformation. International Journal of Non-Linear Mechanics, 37, 315–320.

    Google Scholar 

  • He, J. H. (2003a). Determination of limit cycles for strongly nonlinear oscillators. Physical Review Letters, 90, 174–301. (Art. No. 174301).

    Google Scholar 

  • He, J. H. (2003b). Homotopy perturbation method: A new nonlinear analytical technique. Applied Mathematics and Computation, 135, 73–79.

    Google Scholar 

  • He, J. H. (1999). Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering, 178, 257–262.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • He, J. H. (2004). Asymptology by homotopy perturbation method. Applied Mathematics and Computation, 156, 591–596.

    Article  MATH  MathSciNet  Google Scholar 

  • Hu, H. (2004). A classical perturbation technique which is valid for large parameters. Journal of Sound and Vibration, 269, 409–412.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kamke, A. H. (1959). Differentialgleichungen—Losungsmethoden und Losungen. Leip-zig.

    Google Scholar 

  • Krylov, N., & Bogolubov, N. (1943). Introduction to nonlinear mechanics. New Jersey: Princeton University Press.

    Google Scholar 

  • Lakrad, F., & Belhaq, M. (2002). Periodic solutions of strongly non-linear oscillators by the multiple scales method. Journal of Sound and Vibration, 258, 677–700.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Liao, S. J. (1995). An approximate solution technique not depending on small parameters: A special example. International Journal of Non-Linear Mechanics, 30, 371–380.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Liao, S. J., & Tan, Y. (2007). A general approach to obtain series solutions of nonlinear differential equations. Studies in Applied Mathematics, 119, 297–355.

    Article  MathSciNet  Google Scholar 

  • Lim, C. W., & Wu, B. S. (2002). A modified Mickens procedure for certain non-linear oscillators. Journal of Sound and Vibration, 257, 202–206.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Liu, H. M. (2005). Approximate period of nonlinear oscillators with discontinuities by modified Linstedt-Poincaré method. Chaos, Solitons & Fractals, 23, 577–579.

    Article  ADS  MATH  Google Scholar 

  • Margallo, G. J., & Bejarano, J. D. (1987). A generalization of the method of harmonic balance. Journal of Sound and Vibration, 116, 591–595.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mickens, R. E. (2001). Oscillations in an x\(^{4/3}\) potential. Journal of Sound and Vibration, 246, 375–378.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mickens, R. E. (2002). Analysis of non-linear oscillators having non-polynomial elastic terms. Journal of Sound and Vibration, 255, 789–792.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mickens, R. E. (2010). Truly nonlinear oscillations. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. New York: Wiley.

    MATH  Google Scholar 

  • Qaisi, M. I. (1996). A power series approach for the study of periodic motion. Journal of Sound and Vibration, 196, 401–406.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Rosenberg, R. M. (1963). The Ateb(h)-functions and their properties. Quarterly of Applied Mathematics, 21, 37–47.

    MATH  MathSciNet  Google Scholar 

  • Sarma, M. S., & Rao, B. N. (1997). A rational harmonic balance approximation for the Duffing equation of mixed parity. Journal of Sound and Vibration, 207, 597–599.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Sensoy, S., & Huseyin, K. (1998). On the application of IHB technique to the analysis of non-linear oscillations and bifurcations. Journal of Sound and Vibration, 215, 35–46.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Wu, B. S., & Lim, C. W. (2004). Large amplitude non-linear oscillations of a general conservative system. International Journal of Non-Linear Mechanics, 39, 859–870.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Yuste, S. B., & Bejarano, J. D. (1990). Improvement of a Krylov-Bogoliubov method that use Jacobi elliptic function. Journal of Sound and Vibration, 139, 151–163.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livija Cveticanin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cveticanin, L. (2014). Free Vibrations. In: Strongly Nonlinear Oscillators. Undergraduate Lecture Notes in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-05272-4_4

Download citation

Publish with us

Policies and ethics