Skip to main content

Nonlinear Oscillators

  • Chapter
  • First Online:
Book cover Strongly Nonlinear Oscillators

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

Abstract

In this book the pure nonlinear oscillator is considered. The pure nonlinear oscillator has a pure nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsharfard, A., & Farshidianfar, A. (2012). Design of nonlinear impact dampers based on acoustic and damping behavior. International Journal of Mechanical Sciences, 65, 125–133.

    Article  Google Scholar 

  • Akinpelu, F. O. (2011). The nonlineary fractionally oscillator with strong quadratic damping force. Research Journal of Applied Sciences, 6, 398–404.

    Article  Google Scholar 

  • Alabudzev, P., Grichin, A., Kim, L., Migirenko, G., Chon, V., & Stepanov, P. (1989). Vibration protecting and measuring systems with quasi-zero stiffness. New York: Hemisphere Publishing.

    Google Scholar 

  • Amore, P., & Aranda, A. (2005). Improved Lindstedt-Poincaré method for the solution of nonlinear problems. Journal of Sound and Vibration, 283, 1115–1136.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Andrianov, I. V. (2002). Asymptotics of nonlinear dynamical systems with high degree of nonlinearity. Doklady RAN, 386, 165–168.

    MathSciNet  Google Scholar 

  • Andrianov, I. V., & Awrejcewicz, J. (2003). Asymptotic approaches to strongly nonlinear dynamical systems. Journal on Systems Analysis Modelling Simulation, 43, 255–268.

    Google Scholar 

  • Andrianov, I. V., & Awrejcewicz, J. (2003). Asymptotical behaviour of a system with damping and high power-form nonl-linearity. Journal of Sound and Vibration, 267, 1169–1174.

    Google Scholar 

  • Andrianov, I. A., & van Horssen, D. T. (2006). Analytical approximations of the period of a generalized nonlinear van der Pol oscillator. Journal of Sound and Vibration, 295, 1099–1104.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Araky, Y., Asai, T., & Masui, T. (2010). Vertical vibration isolator having piecewise-constant restoring force. Earthquake Engineering Structural Dynamics, 38, 1505–1523.

    Article  Google Scholar 

  • Awrejcewicz, L., & Andrianov, I. V. (2002). Oscillations of non-linear system with restoring force close to sign(x). Journal of Sound and Vibration, 252, 962–966.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Baltanas, J. P., Trueba, J. L., & Sanjuan, M. A. F. (2001). Energy dissipation in nonlinearly damped Duffing oscillator. Physica D, 159, 22–34.

    Article  ADS  MATH  Google Scholar 

  • Beards, C. (1995). Engineering vibration analysis with application to control systems. London: Edward Arnold.

    Google Scholar 

  • Belendez, A., Pascual, C., Gallego, S., Ortuño, M., & Neipp, V. (2007). Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of an \(x^{1/3}\) force nonlinear oscillator. Physics Letters A, 371, 421–426.

    Article  ADS  MATH  Google Scholar 

  • Bondar, N. G. (1978). Nonlinear vibrations excited by impulses. Kiev-Doneck: Visca skola. (in Russian).

    Google Scholar 

  • Bogolubov, N., & Mitropolski, J. A. (1963). Asymptotical methods in the theory of nonlinear oscillations. Delhi: Hindustan Publishing Co.

    Google Scholar 

  • Burns, D. M., & Bright, V. M. (1997). Nonlinear flexures for stable deflection of an electrostatically actuated micromirror. Proceedings of SPIE: Microelectronics Structures and MEMS for Optical Processing III, 3226, 125–135.

    Google Scholar 

  • Burton, T. D. (1984). A perturbation method for certain non-linear oscillators. International Journal of Non-Linear Mechanics, 19, 397–407.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Carela, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero stiffness characteristic. Journal of Sound and Vibration, 301, 678–689.

    Article  ADS  Google Scholar 

  • Chen, S. H., Yang, X. M., & Cheung, Y. K. (1998). Periodic solutions of strongly quadratic nonlinear oscillators by the elliptic perturbation method. Journal of Sound and Vibration, 212, 771–780.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen, S. H., & Cheung, Y. K. (1996). An elliptic perturbation method for certain strongly non-linear oscillators. Journal of Sound and Vibration, 192, 453–464.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chen, W. H., & Gibson, R. F. (1998). Property distribution determination for nonuniform composite beams from vibration response measurements and Galerkin’s method. Journal of Applied Mechanics, ASME, 65, 127–133.

    Article  ADS  Google Scholar 

  • Chen, Y. Z. (2003). Evaluation of motion of the Duffing equation from its general properties. Journal of Sound Vibration, 264, 491–497.

    Article  ADS  MATH  Google Scholar 

  • Cheng, Y. K., Chen, S. H., & Lau, S. L. (1991). A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators. International Journal of Nonlinear Mechanics, 26, 367–378.

    Article  ADS  Google Scholar 

  • Colm, I. J., & Clark, N. J. (1988). Forming, shaping and working of high-performace ceramics. New York: Blackie.

    Google Scholar 

  • Cooper, K., & Mickens, R. E. (2002). Generalized harmonic balance - numerical method for determining analytical approximations to the periodic solutions of the x\(^{4/3}\) potential. Journal of Sound and Vibration, 250, 951–954.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Coppola, V. T., & Rand, R. H. (1990). Averaing using elliptic functions: Approximation of limit cycles. Acta Mechanica, 81, 125–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Cortopassi, C., & Englander, O. (2010). Nonlinear springs for increasing the maximum stable deflection of MEMS electrostatic gap closing actuators. University of Berkeley, Berkeley, http://www-basic-eecs.berkeley.edu/pister/245/project/CortopassiEnglander.pdf.

  • Cveticanin, L. (1992). Approximate analytical solutions to a class of nonlinear equations with complex functions. Journal of Sound and Vibration, 157, 289–302.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (1993). An asymptotic solution to weak nonlinear vibrations of the rotor. Mechanism and Machine Theory, 28, 495–506.

    Article  Google Scholar 

  • Cveticanin, L. (1998). Analytical methods for solving strongly non-linear differential equations. Journal of Sound and Vibration, 214, 325–338.

    Google Scholar 

  • Cveticanin, L. (2001). Analytic approach for the solution of the complex-valued strong non-linear differential equation of Duffing type. Physica A: Statistical Mechanics and its Applications, 297, 348–360.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2003). Vibrations of the system with quadratic non-linearity and a constant excitation force. Journal of Sound and Vibration, 261, 169–176.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2004). Vibrations of the non-linear oscillator with quadratic non-linearity. Physica A: Statistical Mechanics and its Applications, 341, 123–135.

    Article  ADS  MathSciNet  Google Scholar 

  • Cveticanin, L. (2005). The homotopy-perturbation method applied for solving complex—valued differential equations with strong cubic non-linearity. Journal of Sound and Vibration, 285, 1171–1179.

    Google Scholar 

  • Cveticanin, L. (2005). Free vibration of a Jeffcott rotor with pure cubic non-linear elastic property of the shaft. Mechanism and Machine Theory, 40, 1330–1344.

    Google Scholar 

  • Cveticanin, L. (2006). Homotopy-perturbation method for pure non-linear differential equation. Chaos, Solitons and Fractals, 30, 1221–1230.

    Article  ADS  MATH  Google Scholar 

  • Cveticanin, L. (2008). Analyses of oscillators with non-polynomial damping terms. Journal of Sound and Vibration, 317, 866–882.

    Article  ADS  Google Scholar 

  • Cveticanin, L. (2009). The approximate solving methods for the cubic Duffing equation based on the Jacobi elliptic functions. International Journal of Nonlinear Science and Numerical Simulation, 10, 1491–1516.

    Google Scholar 

  • Cveticanin, L. (2009). Oscillator with strong quadratic damping force. Publications de L’Institut Mathematique, Nouvelle serie, 85, 119–130.

    Google Scholar 

  • Cveticanin, L. (2011). Oscillator with nonlinear elastic and damping force. Computers and Mathematics with Applications, 62, 1745–1757.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2012). Analysis Technique for the Various Forms of the Duffing Equation. In I. Kovacic & M.J. Brennan (Eds.), The Duffing Equation: Nonlinear Oscillators and their Behaviour. London: Wiley.

    Google Scholar 

  • Cveticanin, L., Kalami-Yazdi, M., Saadatnia, Z., & Askari, H. (2010). Application of Hamiltonian approach to the generalized nonlinear oscillator with fractional power. International Journal of Nonlinear Sciences and Numerical Simulation, 11, 997–1001.

    Article  Google Scholar 

  • Cveticanin, L., Kovacic, I., & Rakaric, Z. (2010). Asymptotic methods for vibrations of the pure non-integer order oscillator. Computers and Mathematics with Applications, 60, 2616–2628.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L., Kalami-Yazdi, M., & Askari, H. (2012). Analytical solutions for a generalized oscillator with strong nonlinear terms. Journal of Engineering Mathematics, 77, 211–223.

    Google Scholar 

  • Dixon, J. C. (1996). Tires, suspension and hanling. Warrandale: Society of Automative Engineers.

    Book  Google Scholar 

  • Duffing, G. (1918). Erzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung. Braunschweig: Vieweg & Sohn.

    Google Scholar 

  • Dymnikov, S. I. (1972). Stiffness computation for rubber rings and cords. Issues on Dynamics and Strength, 24, 163–173. (in Russian).

    Google Scholar 

  • Kovacic, I., & Brennan, M. J. (2011). The Duffing Equation: Nonlinear oscillators and their behaviour. London: Wiley.

    Google Scholar 

  • Gatti, G., Kovacic, I., & Brennan, M. J. (2010). On the response of a harmonically excited two degree-of-freedom system consisting of linear and nonlinear quasi-zero stiffness oscillators. Journal of Sound and Vibration, 329, 823–835.

    Article  Google Scholar 

  • Gottlieb, H. P. W. (2003). Frequencies of oscillators with fractional-power non-linearities. Journal of Sound and Vibration, 261, 557–566.

    Google Scholar 

  • Haslach, H. W. (1985). Post-buckling behavior of columns with non-linear constitutive equations. International Journal of Non-Linear Mechanics, 20, 53–67.

    Article  ADS  MATH  Google Scholar 

  • Haslach, H. W. (1992). Influence of adsorbed moisture on the elastic post-buckling behavior of columns made of non-linear hydrophilic polymers. International Journal of Non-Linear Mechanics, 27, 527–546.

    Article  ADS  MATH  Google Scholar 

  • He, J. H. (1998). Homotopy perturbation technique. Computational Methods in Applied Mechanics and Engineering, 178, 257–262.

    Google Scholar 

  • He, J. H. (1998). An approximate solution technique depending upon an artificial parameter. Communications in Nonlinear Science and Numerical Simulation, 3, 92–97.

    Google Scholar 

  • He, J. H. (2002). Modified Lindstedt-Poincaré methods for some strongly nonlinear oscillations, Part I: expansion of a constant. International Journal of Non-Linear Mechanics, 37, 309–314.

    Google Scholar 

  • He, J. H. (2002). Modified Lindstedt-Poincaré methods for some strongly nonlinear oscillations, Part II: a new transformation. International Journal of Non-Linear Mechanics, 37, 315–320.

    Google Scholar 

  • van Horssen, W. T. (2003). On the periods of the periodic solutions of the non-linear oscillator equation \(\ddot{x}+x^{1/(2n+1)}=0.\) Journal of Sound and Vibration, 260, 961–964.

    Google Scholar 

  • Hu, H., & Xiong, Z.-G. (2003). Oscillations in an x\(^{(2m+2)/(2n+1)}\) potential. Journal of Sounda and Vibration, 259, 977–980.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hu, H. (2007). Solution of a mixed parity nonlinear oscillator: Harmonic balance. Journal Sound Vibration, 299, 331–338.

    Article  ADS  Google Scholar 

  • Ibrahim, R. A. (2008). Recent advances in nonlinear passive vibration isolators. Journal Sound Vibration, 314, 371–452.

    Article  ADS  Google Scholar 

  • Jones, T. B., & Nenadic, N. G. (2013). Electromechanics and MEMS. New York: Cambridge University Press.

    Book  Google Scholar 

  • Jutte, C. V. (2008). Generalized synthesis methodology of nonlinear springs for prescribed load—displacement functions. Ph.D. Thesis, Michigan: Mechanical Engineering, The University of Michigan.

    Google Scholar 

  • Kanai, Y., & Yabuno, H. (2012). Creation-annihilation process of limit cycles in the Rayleigh-Duffing oscillator. Nonlinear Dynamics, 70, 1007–1016.

    Google Scholar 

  • Kermani, M. M., & Dehestani, M. (2013). Solving the nonlinear equations for one-dimensional nano-sized model including Rydberg and Varshni potentials and Casimir force using the decomposition method. Applied Mathematical Modelling, 37, 3399–3406.

    Article  MathSciNet  Google Scholar 

  • Kovacic, I. (2011). The method of multiple scales for forced oscillators with some real-power nonlinearities in the stiffness and damping force. Chaos, Solitons & Fractals, 44, 891–901.

    Article  ADS  Google Scholar 

  • Kovacic, I., Brennan, M. J., Waters, T. P. (2008). A study of a non-linear vibration isolator with quasi-zero stiffness charadteristic. Journal of Sound and Vibration, 315, 700–711.

    Google Scholar 

  • Kovacic, I., & Brennan, M. J. (2008). On the use of two classical series expansion methods to determine the vibration of harmonically excited pure cubic oscillators. Physics Letters A 372, 4028–4032.

    Google Scholar 

  • Kovacic, I., Rakaric, Z., & Cveticanin, L. (2010). A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities. Applied Mathematics and Computation, 217, 3944–3954.

    Article  MathSciNet  MATH  Google Scholar 

  • Krylov, N., & Bogolubov, N. (1943). Introduction to nonlinear mechanics. New Jersey: Princeton University Press.

    Google Scholar 

  • Leung, A. Y. T., Guo, Z. J., & Yang, H. X. (2012). Residue harmonic balance analysis for the damped Duffing resonator driven by a van der Pol oscillator. International Journal of Mechanical Sciences, 63, 59–65.

    Article  Google Scholar 

  • Lewis, G., & Monasa, F. (1982). Large deflections of cantilever beams of non-linear materials of the Ludwick type subjected to an end moment. International Journal of Non-Linear Mechanics, 17, 1–6.

    Article  ADS  MATH  Google Scholar 

  • Liao, S. J., & Tan, Y. (2007). A general approach to obtain series solutions of nonlinear differential equations. Studies in Applied Mathematics, 119, 297–355.

    Article  MathSciNet  Google Scholar 

  • Lo, C. C., & Gupta, S. D. (1978). Bending of a nonlinear rectangular beam in large deflection. Journal of Applied Mechanics, ASME, 45, 213–215.

    Article  ADS  Google Scholar 

  • Lou, J. J., Zhu, S. J., He, L., & He, Q. W. (2009). Experimental chaos in non-linear vibration isolation system. Chaos, Solitons and Fractals, 40, 1367–1375.

    Article  ADS  Google Scholar 

  • Mickens, R. E. (1981). A uniformly valid asymptotic solution for \(d^{2}y/dt^{2}+y=a+\varepsilon y^{2}.\) Journal of Sound and Vibration, 76, 150–152.

    Google Scholar 

  • Mickens, R. E. (2001). Oscillations in an x\(^{4/3}\) potential. Journal of Sound and Vibration, 246, 375–378.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mickens, R. E. (2002). Analysis of non-linear oscillators having non-polynomial elastic terms. Journal of Sound and Vibration, 255, 789–792.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mickens, R. E. (2003). A combined equivalent linearization and averaging perturbation method for non-linear oscillator equations. Journal of Sound and Vibration, 264, 1195–1200.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mickens, R. E. (2005). A generalized iteration procedure for calculating approximatic solutions of “truly nonlinear oscillators”. Journal of Sound and Vibration, 287, 1045–1051.

    Google Scholar 

  • Mickens, R. E. (2006). Iteration method solutions for conservative and limit-cycle \(x^{1/3}\) force oscillators. Journal of Sound and Vibration, 292, 964–968.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mickens, R. E. (2010). Truly nonlinear oscillations. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Mickens, R. E., & Oyedeji, K. (1985). Construction of approximate analytical solutions to a new class of non-linear oscillator equation. Journal of Sound and Vibration, 102, 579–582.

    Article  ADS  MathSciNet  Google Scholar 

  • Mojahedi, M., Zand, M. M., Ahmadian, M. T., & Babaei, M. (2001). Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges. International Journal of Structural Stability and Dynamics, 11, 1119–1137.

    Article  Google Scholar 

  • Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. New York: John Wiley & Sons.

    MATH  Google Scholar 

  • Nijse, G .L. P. (2001). Linear motion systems: a modular approach for improved straightness performance. Ph.D. Thesis, Delft: University of Technology.

    Google Scholar 

  • Ozis, T., & Yildirm, T. A. (2007). Determination of periodic solution for a \(u^{1/3}\) force by He’s modified Lindstedt-Poincaré method. Journal of Sound and Vibration, 301, 415–419.

    Article  ADS  MathSciNet  Google Scholar 

  • Patten, W. N., Sha, S., & Mo, C. (1998). A vibration model of open celled polyurethane foam automative seat cuchions. Journal of Sound and Vibration, 217, 145–161.

    Article  ADS  Google Scholar 

  • Pilipchuk, V. N. (2007). Strongly nonlinear vibration of damped oscillators with two nonsmooth limits. Journal of Sound and Vibration, 302, 398–402.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pilipchuk, V. N. (2010). Nonlinear dynamics: Between linear and impact limits. New York: Springer.

    Book  Google Scholar 

  • Polo, M. F. P., Molina, M. P., & Chica, J. G. (2009). Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation. Chaos, Solitons and Fractals, 39, 1356–1370.

    Article  ADS  MATH  Google Scholar 

  • Polo, M. F. P., Molina, M. P., & Chica, J. G. (2010). Self-oscillations and chaotic dynamic of a nonlinear controlled nano-oscillator. Journal of Computational and Theoretical Nanoscience, 7, 2463–2477.

    Article  Google Scholar 

  • Prathap, G., & Varadan, T. K. (1976). The inelastic large deformation of beams. ASME Journal of Applied Mechanics, 43, 689–690.

    Article  ADS  Google Scholar 

  • Ravindra, B., & Mallik, A. K. (1994). Role of nonlinear dissipation in soft Duffing oscillators. Physical Review E, 49, 4950–4954.

    Article  ADS  Google Scholar 

  • Rivin, E. I. (2003). Passive Vibration Isolation. New York: ASME Press.

    Book  Google Scholar 

  • Russell, D., & Rossing, T. (1998). Testing the nonlinearity of piano hammers using residual shock spectra. Acta Acustica, 84, 967–975.

    Google Scholar 

  • Sanjuan, M. A. F. (1999). The effect of nonlinear damping on the universal escape oscillator. International Journal of Bifurcation and Chaos, 9, 735–744.

    Article  ADS  MATH  Google Scholar 

  • Sharma, A., Patidar, V., Purohit, G., & Sud, K. K. (2012). Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Communication in Nonlinear Science and Numerical Simulation, 17, 2254–2269.

    Article  ADS  MathSciNet  Google Scholar 

  • Siewe, M. S., Cao, H., & Sanjuan, M. A. F. (2009). Effect of nonlinear dissipation on the boundaries of basin of attraction in two-well Rayleigh-Duffing oscillators. Chaos, Solitons & Fractals, 39, 1092–1099.

    Article  ADS  MATH  Google Scholar 

  • de Sudipto, K., & Aluru, N.R. (2006). Complex nonlinear oscillations in electrostatically actuated microstructures. IEEE Journal of Microelectromechanical Systems, 5, 355–369.

    Google Scholar 

  • de Sudipto, K., & Aluru, N.R. (2006). U-sequence in electrostatic micromechanical systems (MEMS). Proceedings of the Royal Society A, 462, 3435–3464.

    Google Scholar 

  • Trueba, J. L., Rams, J., & Sanjuan, M. A. F. (2000). Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. International Journal of Bifurcation and Chaos, 10, 2257–2267.

    ADS  MathSciNet  MATH  Google Scholar 

  • Waluya, S. B., & van Horssen, W. T. (2003). On the periodic solutions of a generalized non-linear van der Pol oscillator. Journal of Sound and Vibration, 268, 209–215.

    Google Scholar 

  • Xing, J. T., Xiong, Y. P., & Price, W. G. (2005). Passive active vibration isolation systems to produce zero of infinite dynamic modulus: theoretical and conceptual design strategies. Journal of Sound and Vibration, 286, 615–636.

    Article  ADS  Google Scholar 

  • Xiong, Y. P., Xing, J. T., & Price, W. G. (2005). Interactive power flow characteristics of an integrated equipment—nonlinear isolator—travelling flexible ship excited by sea waves. Journal of Sound and Vibration, 287, 245–276.

    Google Scholar 

  • Yuste, S. B., & Bejarano, J. D. (1986). Construction of approximate analytical solution to a new class of a non-linear oscillator equations. Journal of Sound of Vibration, 110, 347–350.

    Article  ADS  MATH  Google Scholar 

  • Yuste, B. S., & Bejarano, J. D. (1990). Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions. Journal of Sound and Vibration, 139, 151–163.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhu, Q., & Ishitoby, M. (2004). Chaos and bifurcations in a nonlinear vehicle model. Journal of Sound and Vibration, 275, 1136–1146.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livija Cveticanin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cveticanin, L. (2014). Nonlinear Oscillators. In: Strongly Nonlinear Oscillators. Undergraduate Lecture Notes in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-05272-4_2

Download citation

Publish with us

Policies and ethics