Skip to main content

Decoding Coalescent Hidden Markov Models in Linear Time

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8394))

Abstract

In many areas of computational biology, hidden Markov models (HMMs) have been used to model local genomic features. In particular, coalescent HMMs have been used to infer ancient population sizes, migration rates, divergence times, and other parameters such as mutation and recombination rates. As more loci, sequences, and hidden states are added to the model, however, the runtime of coalescent HMMs can quickly become prohibitive. Here we present a new algorithm for reducing the runtime of coalescent HMMs from quadratic in the number of hidden time states to linear, without making any additional approximations. Our algorithm can be incorporated into various coalescent HMMs, including the popular method PSMC for inferring variable effective population sizes. Here we implement this algorithm to speed up our demographic inference method diCal, which is equivalent to PSMC when applied to a sample of two haplotypes. We demonstrate that the linear-time method can reconstruct a population size change history more accurately than the quadratic-time method, given similar computation resources. We also apply the method to data from the 1000 Genomes project, inferring a high-resolution history of size changes in the European population.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browning, B.L., Browning, S.R.: A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 88, 173–182 (2011)

    Article  Google Scholar 

  2. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  3. Cahill, J.A., Green, R.E., Fulton, T.L., et al.: Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genetics 9, e1003345 (2013)

    Google Scholar 

  4. Dutheil, J.Y., Ganapathy, G., Hobolth, A., et al.: Ancestral population genomics: the coalescent hidden Markov model approach. Genetics 183, 259–274 (2009)

    Article  Google Scholar 

  5. Ernst, J., Kellis, M.: ChromHMM: automating chromatin-state discovery and characterization. Nature Methods 9, 215–216 (2012)

    Article  Google Scholar 

  6. Groenen, M.A., Archibald, A.L., Uenishi, H., et al.: Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424), 393–398 (2012)

    Article  Google Scholar 

  7. Gronau, I., Hubisz, M.J., Gulko, B., et al.: Bayesian inference of ancient human demographic history from individual genome sequences. Nature Genetics 43, 1031–1034 (2011)

    Article  Google Scholar 

  8. Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H., Bustamante, C.D.: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics 5, e1000695 (2009)

    Google Scholar 

  9. Haddrill, P.R., Thornton, K.R., Charlesworth, B., Andolfatto, P.: Multilocus patterns of nucleotide variability and the demographic selection history of Drosophila melanogaster populations. Genome Res. 15, 790–799 (2005)

    Article  Google Scholar 

  10. Hailer, F., Kutschera, V.E., Hallstrom, B.M., et al.: Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336, 344–347 (2012)

    Article  Google Scholar 

  11. Harris, K., Nielsen, R.: Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genetics 9, e1003521 (2013)

    Google Scholar 

  12. Hobolth, A., Christensen, O.F., Mailund, T., Schierup, M.H.: Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genetics 3, 294–304 (2007)

    Article  Google Scholar 

  13. Hudson, R.R.: Properties of the neutral allele model with intergenic recombination. Theor. Popul. Biol. 23, 183–201 (1983)

    Article  MATH  Google Scholar 

  14. Hudson, R.R.: Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  Google Scholar 

  15. Li, H., Durbin, R.: Inference of human population history from individual whole-genome sequences. Nature 10, 1–5 (2011)

    Article  Google Scholar 

  16. Mailund, T., Dutheil, J.Y., Hobolth, A., et al.: Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS Genetics 7, e1001319 (2011)

    Google Scholar 

  17. Mailund, T., Halager, A.E., Westergaard, M., et al.: A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genetics 8(12), e1003125 (2012)

    Google Scholar 

  18. Meyer, M., Kircher, M., Gansauge, M.T., et al.: A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)

    Article  Google Scholar 

  19. Miller, W., Schuster, S.C., Welch, A.J.: Polar and brown bear genomes reveal ancient admixture and demographic footprints of plast climate change. Proc. Natl. Acad. Sci. USA 109, 2382–2390 (2012)

    Article  Google Scholar 

  20. Orlando, L., Ginolhac, A., Zhang, G., et al.: Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013)

    Article  Google Scholar 

  21. Palamara, P.F., Lencz, T., Darvasi, A., Pe’er, I.: Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822 (2012)

    Article  Google Scholar 

  22. Paul, J.S., Steinrücken, M., Song, Y.S.: An accurate sequentially Markov conditional sampling distribution for the coalescent with recombination. Genetics 187, 1115–1128 (2011)

    Article  Google Scholar 

  23. Pritchard, J.: Whole-genome sequencing data offer insights into human demography. Nature Genetics 43, 923–925 (2011)

    Article  Google Scholar 

  24. Sheehan, S., Harris, K., Song, Y.S.: Estimating variable effective population sizes from multiple genomes: A sequentially Markov conditional sampling distribution approach. Genetics 194, 647–662 (2013)

    Article  Google Scholar 

  25. Steinrücken, M., Paul, J.S., Song, Y.S.: A sequentially Markov conditional sampling distribution for structured populations with migration and recombination. Theor. Popul. Biol. 87, 51–61 (2013)

    Article  Google Scholar 

  26. The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

    Google Scholar 

  27. Thornton, K., Andolfatto, P.: Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics 172, 1607–1619 (2006)

    Article  Google Scholar 

  28. Wan, Q.H., Pan, S.K., Hu, L., et al.: Genome analysis and signature discovery for diving and sensory properties of the endangered chinese alligator. Cell Res. 23(9), 1091–1105 (2013)

    Article  Google Scholar 

  29. Wiuf, C., Hein, J.: Recombination as a point process along sequences. Theor. Popul. Biol. 55, 248–259 (1999)

    Article  MATH  Google Scholar 

  30. Zhao, S., Zheng, P., Dong, S., et al.: Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45, 67–71 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Harris, K., Sheehan, S., Kamm, J.A., Song, Y.S. (2014). Decoding Coalescent Hidden Markov Models in Linear Time. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05269-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05268-7

  • Online ISBN: 978-3-319-05269-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics