Skip to main content

Reconstructing Breakage Fusion Bridge Architectures Using Noisy Copy Numbers

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8394))

Abstract

The Breakage Fusion Bridge (BFB) process is a key marker for genomic instability, producing highly rearranged genomes in relatively small number of cell cycles. While the process itself was observed during the late 1930’s, little is known about the extent of BFB in tumor genome evolution. This is partly due to methodological requiring the rare observation of a spontaneous BFB occurence, or rigorous assays for identifying BFB-modified genomes after the process has ceased. Moreover, BFB can dramatically increase copy numbers of chromosomal segments, which in turn hardens the tasks of both reference assisted and ab initio genome assembly.

Based on available data such as Next Generation Sequencing (NGS) and Array Comparative Genomic Hybridization (aCGH) data, we show here how BFB evidence may be identified, and how to predict all possible evolutions of the process with respect to observed data. Specifically, we describe practical algorithms that, given a chromosomal arm segmentation and noisy segment copy number estimates, produce all segment count vectors supported by the data that can be produced by BFB, and all corresponding BFB architectures. This extends the scope of analyses described in our previous work, which produced a single count vector and architecture per instance.

We apply these analyses to a comprehensive human cancer dataset, demonstrate the effectiveness and efficiency of the computation, and suggest methods for further assertions of candidate BFB samples. An online Appendix, the source code of our tool, and analyses results, are available at http://cseweb.ucsd.edu/~vbafna/bfb .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkan, C., Kidd, J.M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., Kitzman, J.O., Baker, C., Malig, M., Mutlu, O., Sahinalp, S.C., Gibbs, R.A., Eichler, E.E.: Personalized copy number and segmental duplication maps using next-generation sequencing. Nat. Genet. 41, 1061–1067 (2009)

    Article  Google Scholar 

  2. Bignell, G.R., Greenman, C.D., Davies, H., Butler, A.P., Edkins, S., Andrews, J.M., Buck, G., Chen, L., Beare, D., Latimer, C., Widaa, S., Hinton, J., Fahey, C., Fu, B., Swamy, S., Dalgliesh, G.L., Teh, B.T., Deloukas, P., Yang, F., Campbell, P.J., Futreal, P.A., Stratton, M.R.: Signatures of mutation and selection in the cancer genome. Nature 463(7283), 893–898 (2010)

    Article  Google Scholar 

  3. Bignell, G.R., Santarius, T., Pole, J.C., Butler, A.P., Perry, J., Pleasance, E., Greenman, C., Menzies, A., Taylor, S., Edkins, S., Campbell, P., Quail, M., Plumb, B., Matthews, L., McLay, K., Edwards, P.A., Rogers, J., Wooster, R., Futreal, P.A., Stratton, M.R.: Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome. Res. 17, 1296–1303 (2007)

    Article  Google Scholar 

  4. Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Stebbings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., McBride, D.J., Varela, I., Nik-Zainal, S.A., Leroy, C., Jia, M., Menzies, A., Butler, A.P., Teague, J.W., Griffin, C.A., Burton, J., Swerdlow, H., Quail, M.A., Stratton, M.R., Iacobuzio-Donahue, C., Futreal, P.A.: The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319), 1109–1113 (2010)

    Article  Google Scholar 

  5. Carr, A.M., Paek, A.L., Weinert, T.: DNA replication: failures and inverted fusions. Semin. Cell Dev. Biol. 22(8), 866–874 (2011)

    Article  Google Scholar 

  6. Chiang, D.Y., Getz, G., Jaffe, D.B., O’Kelly, M.J., Zhao, X., Carter, S.L., Russ, C., Nusbaum, C., Meyerson, M., Lander, E.S.: High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6(1), 99–103 (2009)

    Article  Google Scholar 

  7. Eckel-Passow, J.E., Atkinson, E.J., Maharjan, S., Kardia, S.L., de Andrade, M.: Software comparison for evaluating genomic copy number variation for Affymetrix 6.0 SNP array platform. BMC Bioinformatics 12, 220 (2011)

    Article  Google Scholar 

  8. Greenman, C.D., Bignell, G., Butler, A., Edkins, S., Hinton, J., Beare, D., Swamy, S., Santarius, T., Chen, L., Widaa, S., Futreal, P.A., Stratton, M.R.: PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics 11(1), 164–175 (2010)

    Article  Google Scholar 

  9. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  10. Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in gene copy number. Nat. Rev. Genet. 10(8), 551–564 (2009)

    Article  Google Scholar 

  11. Kinsella, M., Bafna, V.: Combinatorics of the breakage-fusion-bridge mechanism. J. Comput. Biol. 19(6), 662–678 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kitada, K., Yamasaki, T.: The complicated copy number alterations in chromosome 7 of a lung cancer cell line is explained by a model based on repeated breakage-fusion-bridge cycles. Cancer Genet. Cytogenet. 185, 11–19 (2008)

    Article  Google Scholar 

  13. McClintock, B.: The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics 23, 315–376 (1938)

    Google Scholar 

  14. McClintock, B.: The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234–282 (1941)

    Google Scholar 

  15. Medvedev, P., Stanciu, M., Brudno, M.: Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6, 13–20 (2009)

    Article  Google Scholar 

  16. Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmentation for the analysis of array-based dna copy number data. Biostatistics 5(4), 557–572 (2004)

    Article  MATH  Google Scholar 

  17. Reshmi, S.C., Roychoudhury, S., Yu, Z., Feingold, E., Potter, D., Saunders, W.S., Gollin, S.M.: Inverted duplication pattern in anaphase bridges confirms the breakage-fusion-bridge (bfb) cycle model for 11q13 amplification. Cytogenetic and Genome Research 116(1-2), 46–52 (2007)

    Article  Google Scholar 

  18. Venkatraman, E.S., Olshen, A.B.: A faster circular binary segmentation algorithm for the analysis of array cgh data. Bioinformatics 23(6), 657–663 (2007)

    Article  Google Scholar 

  19. Yoon, S., Xuan, Z., Makarov, V., Ye, K., Sebat, J.: Sensitive and accurate detection of copy number variants using read depth of coverage. Genome. Res. 19(9), 1586–1592 (2009)

    Article  Google Scholar 

  20. Zakov, S., Kinsella, M., Bafna, V.: An algorithmic approach for breakage-fusion-bridge detection in tumor genomes. Proceedings of the National Academy of Sciences 110(14), 5546–5551 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zakov, S., Bafna, V. (2014). Reconstructing Breakage Fusion Bridge Architectures Using Noisy Copy Numbers. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05269-4_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05268-7

  • Online ISBN: 978-3-319-05269-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics