Skip to main content

Kodaira-Spencer Formality of Products of Complex Manifolds

  • Conference paper
  • First Online:
Trends in Contemporary Mathematics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 8))

  • 1265 Accesses

Abstract

We shall say that a complex manifold X is Kodaira-Spencer formal if its Kodaira-Spencer differential graded Lie algebra A 0, ∗ X (Θ X ) is formal; if this happen, then the deformation theory of X is completely determined by the graded Lie algebra H (X, Θ X ) and the base space of the semiuniversal deformation is a quadratic singularity. Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and we actually know only a limited class of cases where this happen. Among such examples we have Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map H (X, Ω X 1) → H (X, Θ X ) [4] and every compact Kähler manifold with trivial or torsion canonical bundle, see [9] and references therein. In this short note we investigate the behavior of this property under finite products. Let X, Y be compact complex manifolds; we prove that whenever X and Y are Kähler, then X × Y is Kodaira-Spencer formal if and only if the same holds for X and Y (Corollary 7.2). A revisit of a classical example by Douady shows that the above result fails if the Kähler assumption is dropped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Deligne, Letter to J. Millson, April 24, 1986

    Google Scholar 

  2. P. Deligne, P. Griffiths, J. Morgan, D. Sullivan, Real homotopy theory of Kähler manifolds. Invent. Math. 29, 245–274 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Douady, Obstruction primaire à la déformation. Sém. Cartan 13 (1960/1961), Exp. 4.

    Google Scholar 

  4. D. Fiorenza, M. Manetti, Formality of Koszul brackets and deformations of holomorphic Poisson manifolds. Homol. Homotopy Appl. 14(2), 63–75 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. W.M. Goldman, J.J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. W.M. Goldman, J.J. Millson, The homotopy invariance of the Kuranishi space. Ill. J. Math. 34, 337–367 (1990)

    MATH  MathSciNet  Google Scholar 

  7. P.H. Griffiths, J.W. Morgan, Rational Homotopy Theory and Differential Forms. Progress in Mathematics, vol. 16 (Birkhäuser, Boston, 1981)

    Google Scholar 

  8. A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II. Inst. Hautes Études Sci. Publ. Math. 17 (1963)

    Google Scholar 

  9. D. Iacono, M. Manetti, An algebraic proof of Bogomolov-Tian-Todorov theorem. Deform. Spaces 39, 113–133 (2010). Vieweg Verlag, arXiv:0902.0732

    Google Scholar 

  10. G.R. Kempf, Some elementary proofs of basic theorems in the cohomology of quasi-coherent sheaves. Rocky Mt. J. Math. 10, 637–646 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Kodaira, D.C. Spencer, On deformations of complex analytic structures, II. Ann. Math. (2) 67, 403–466 (1958)

    Google Scholar 

  12. M. Manetti, Deformation theory via differential graded Lie algebras, in Seminari di Geometria Algebrica 1998–1999 (Scuola Normale Superiore, Pisa, 1999). arXiv:math.AG/0507284

    Google Scholar 

  13. M. Manetti, Lectures on deformations on complex manifolds. Rend. Mat. Appl. (7) 24, 1–183 (2004). arXiv:math.AG/0507286

    Google Scholar 

  14. M. Manetti, On some formality criteria for DG-Lie algebras. Submitted, arXiv:1310.3048

    Google Scholar 

  15. H. Matsumura, On algebraic groups of birational transformations. Rend. Accad. Lincei Ser. 8 34, 151–155 (1963)

    MathSciNet  Google Scholar 

  16. I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)

    MATH  Google Scholar 

  17. A. Nijenhuis, R.W. Richardson, Cohomology and deformations of algebraic structures. Bull. Am. Math. Soc. 70(3), 406–411 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Schlessinger, J. Stasheff, Deformation theory and rational homotopy type (1979). Preprint, arXiv:1211.1647 [math.QA]

    Google Scholar 

  19. R. Vakil, Murphy’s law in algebraic geometry: badly-behaved deformation spaces. Invent. Math. 164, 569–590 (2006). arXiv:math.AG/0411469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Manetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Manetti, M. (2014). Kodaira-Spencer Formality of Products of Complex Manifolds. In: Ancona, V., Strickland, E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-05254-0_7

Download citation

Publish with us

Policies and ethics