Skip to main content

Exploring Noncommutative Algebras via Deformation Theory

  • Conference paper
  • First Online:
  • 1284 Accesses

Part of the book series: Springer INdAM Series ((SINDAMS,volume 8))

Abstract

This is an expository paper which explains how one can use deformation theory to construct new algebras from known ones, and study their properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By “an algebra” we always mean an associative algebra with unit.

  2. 2.

    The word “flat” refers to the fact that A is a (topologically) flat module over K, i.e. the functor of completed tensor product with this module is exact.

  3. 3.

    Note that we don’t have to worry about the existence of a unit in A since a flat formal deformation of an algebra with unit always has a unit.

References

  1. J. Alev, M.A. Farinati, T. Lambre, A.L. Solotar, Homologie des invariants d’une algèbre de Weyl sous l’action d’un groupe fini. J. Algebra 232, 564–577 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Braverman, D. Gaitsgory, Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181(2), 315–328 (1996). hep-th/9411113

    Google Scholar 

  3. A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras. J. Reine und Angew. Math. 500, 127–190 (1998)

    MATH  Google Scholar 

  5. V. Dolgushev, P. Etingof, Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology, math.QA/0410562. Int. Math. Res. Not. 27, 1657–1688 (2005)

    Google Scholar 

  6. V.G. Drinfeld, Degenerate affine Hecke algebras and Yangians. Func. Anal. Appl. 20, 62–64 (1986)

    Article  MathSciNet  Google Scholar 

  7. V. Drinfeld, On quadratic commutation relations in the quasiclassical case, Mathematical physics, functional analysis (Russian), 25–34, 143, “Naukova Dumka”, Kiev, 1986. Selecta Math. Sovietica. 11, 317–326 (1992)

    MathSciNet  Google Scholar 

  8. P. Etingof, Cherednik and Hecke algebras of varieties with a finite group action. math.QA/0406499

    Google Scholar 

  9. P. Etingof, V. Ginzburg, Symplectic reflection algebras, Calogero-Moser systems, and a deformed Harish-Chandra isomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Etingof, A. Oblomkov, Quantization, orbifold cohomology, and Cherednik algebras. math.QA/0311005, Contemp. Math. 417, 171–182 (American Mathematical Society, Providence, 2006)

    Google Scholar 

  11. P. Etingof, E. Rains, New deformations of group algebras of Coxeter groups. math.QA/0409261, Int. Math. Res. Not. 2005(10), 635–646

    Google Scholar 

  12. B.V. Fedosov, A simple geometrical construction of deformation quantization. J. Diff. Geom. 40, 213–238 (1994)

    MATH  MathSciNet  Google Scholar 

  13. M. Gerstenhaber, On the deformation of rings and algebras. Ann. Math. (2) 79, 59–103 (1964)

    Google Scholar 

  14. G. Halbout, X. Tang, Dunkl operator and quantization of Z/2-singularity. J. für die Reine und Ang. Mat. 2012(673), 209–235

    MATH  MathSciNet  Google Scholar 

  15. G. Hochschild, B. Kostant, A. Rosenberg, Differential forms on regular affine algebras. Trans. Am. Math. Soc. 102, 383–408 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Kontsevich, Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003). q-alg/9709040

    Google Scholar 

  17. O. Mathieu, Homologies associated with Poisson structures, in Deformation theory and symplectic geometry (Ascona, 1996). Mathematical Physics Studies, vol. 20 (Kluwer Academic, Dordrecht, 1997), pp. 177–199

    Google Scholar 

  18. R. Nest, B. Tsygan, Algebraic index theorem. Comm. Math. Phys. 172(2), 223–262 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Polishchuk, L. Positselski, Quadratic algebras. Preprint, 1996 (to be published by the AMS, 2005)

    Google Scholar 

Download references

Acknowledgements

This paper is based on my lecture at “Giornata IndAM”, Naples, June 7, 2005. I would like to thank the organizers, in particular Corrado De Concini and Paolo Piazza for this wonderful opportunity. I am also grateful to J. Stasheff for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Etingof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Etingof, P. (2014). Exploring Noncommutative Algebras via Deformation Theory. In: Ancona, V., Strickland, E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-05254-0_5

Download citation

Publish with us

Policies and ethics