Skip to main content

Multiscale Modeling of Sickle Cell Anemia

  • Chapter
Modeling the Heart and the Circulatory System

Part of the book series: MS&A ((MS&A,volume 14))

  • 1994 Accesses

Abstract

Sickle cell anemia (SCA) is a genetic inherited hematological disorder mainly characterized by three biophysical hallmarks: heterogeneous cell morphology, abnormal rheology and vaso-occlusion crisis. The major challenge for numerical investigation of this disease is to model the dynamic processes over the wide range of length scales incorporated (sickle hemoglobin (HbS) polymerization to vaso-occlusion). In this chapter, we present a multi-scale computational framework of sickle red blood cell (SS-RBC), based on dissipative particle dynamics, to investigate the above three hallmarks. We first predict the heterogeneous SS-RBC morphological transition by coupling a RBC model with a stochastic coarse-grained model representing the intracellular HbS polymerization. We then quantify the abnormal rheology and hemodynamics of SS-RBC suspensions with a multi-scale SS-RBC model accounting for heterogeneous cell rigidity and the previously predicted cell morphologies. Finally, we employ the present model to quantify the mechanism of vaso-occlusion crisis associate with SCA. The heterogeneous cell adhesivity among the different cell groups and their specific contribution to occlusion crisis, as well as the role of inflammation-stimulated leukocyte are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unpublished data from Ming Dao and Sarah E Du at MIT (private communication)

    Google Scholar 

  2. Aprelev, A., Liu, Z., Ferrone, F.A.: The growth of sickle hemoglobin polymers. Biophysical Journal 101, 885–891 (2011)

    Article  Google Scholar 

  3. Asakura, T., Mattiello, J.A., Obata, K., Asakura, K., Reilly, M.P., Tomassini, N., Schwartz, E., Ohene-Frempong, K.: Partially oxygenated sickle cells: Sickle-shaped red cells found in circulating blood of patients with sickle cell disease. Proceedings of the National Academy of Sciences 91, 12,589–12,593 (1994)

    Article  Google Scholar 

  4. Ataga, K.I., Reid, M., Ballas, S.K., Yasin, Z., Bigelow, C., James, L.S., Smith, W.R., Galacteros, F., Kutlar, A., Hull, J.H., Stocker, J.W., for the ICA-17043-10 Study Investigators: Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the gardos channel blocker senicapoc (ica-17043). British Journal of Haematology 153(1), 92–104 (2011)

    Article  Google Scholar 

  5. Ballas, S.K., Larner, J., Smith, E.D., Surrey, S., Schwartz, E., Rappaport, E.F.: Rheologic predictors of the severity of the painful sickle cell crisis. Blood 72, 1216–1223 (1988)

    Google Scholar 

  6. Ballas, S.K., Mohandas, N.: Sickle red cell microrheology and sickle blood rheology. Microcirculation 11, 209–225 (2004)

    Article  Google Scholar 

  7. Barabino, G.A., McIntire, L.V., Eskin, S.G., Sears, D.A., Udden, M.: Endothelial cell interactions with sickle cells, sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood 70, 152–157 (1987)

    Google Scholar 

  8. Barabino, G.A., Platt, M.O., Kaul, D.K.: Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12, 345–367 (2010)

    Article  Google Scholar 

  9. Berger, S.A., King, W.S.: Flow of sickle-cell blood in the capillaries. Biophysical Journal 29(1), 119–148 (1980)

    Article  Google Scholar 

  10. Berger, S.A., King, W.S.: Diffusion and convection in the capillaries in sickle-cell disease. Blood Cells 8(1), 153–161 (1982)

    Google Scholar 

  11. Bow, H., Pivkin, I.V., Diez-Silva, M., Goldfless, S.J., Dao, M., Niles, J.C., Suresh, S., Han, J.: A microfabricated deformability-based flow cytometer with application to malaria. Lab on a Chip 11, 1065–1073 (2011)

    Article  Google Scholar 

  12. Bridges, K., Barabino, G., Brugnara, C., Cho, M., Christoph, G., Dover, G., Ewenstein, B., Golan, D., Guttmann, C., Hofrichter, J., Mulkern, R., Zhang, B., Eaton, W.: A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood 88, 4701–4710 (1996)

    Google Scholar 

  13. Briehl, R.W.: Nucleation, fiber growth and melting and domain formation and structure in sickle cell hemoglobin gels. Journal of Molecular Biology 245, 710–723 (1995)

    Article  Google Scholar 

  14. Cao, Z., Ferrone, F.: Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method. Biophys. J. 72, 343–352 (1997)

    Article  Google Scholar 

  15. Chiang, E.Y., Frenette, P.S.: Sickle cell vaso-occlusion. Hematology/Oncology Clinics of North America 19, 771–784 (2005)

    Article  Google Scholar 

  16. Christoph, G.W., Hofrichter, J., Eaton, W.A.: Understanding the shape of sickled red cells. Biophysical Journal 88(2), 1371–1376 (2005)

    Article  Google Scholar 

  17. Clark, M.R., Mohandas, N., Shohet, S.B.: Deformability of oxygenated irrversibly sickled cells. Journal of Clinical Investigation 65, 189–196 (1980)

    Article  Google Scholar 

  18. Coletta, M., Hofrichter, J., Ferrone, F.A., Eaton, W.A.: Kinetics of sickle haemoglobin polymerization in single red cells. Nature 300, 194–197 (1982)

    Article  Google Scholar 

  19. Corbett, J.D., Mickols, W.E., Maestre, M.F.: Effect of hemoglobin concentration on nucleation and polymer formation in sickled red blood cells. J. Biol. Chem. 270, 2708–2715 (1995)

    Article  Google Scholar 

  20. Damiano, E.R., Westheider, J., Tozeren, A., Ley, K.: Variation in the velocity, deformation, and adhesion energy density of leukocytes rolling within venules. Circulation Research 79, 1122–1130 (1996)

    Article  Google Scholar 

  21. Daniels, D.R., Marenduzzo, D., Turner, M.S.: Stall, spiculate, or run away: The fate of fibers growing towards fluctuating membranes. Phys. Rev. Lett. 97, 098,101 (2006)

    Article  Google Scholar 

  22. Dao, M., Li, J., Suresh, S.: Molecularly based analysis of deformation of spectrin network and human erythrocyte. Materials Science and Engineering C 26, 1232–1244 (2006)

    Article  Google Scholar 

  23. Discher, D.E., Boal, D.H., Boey, S.K.: Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophysical Journal 75(3), 1584–1597 (1998)

    Article  Google Scholar 

  24. Dong, C., Chardwick, R.S., Schechter, A.N.: Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Biophysical Journal 63, 774–783 (1992)

    Article  Google Scholar 

  25. Dou, Q., Ferrone, F.A.: Simulated formation of polymer domains in sickle hemoglobin. Biophysical Journal 65, 2068–2077 (1993)

    Article  Google Scholar 

  26. Dupin, M.M., Halliday, I., Care, C.M., Alboul, L., Munn, L.L.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E 75(6), 066,707 (2007)

    Article  Google Scholar 

  27. Dupin, M.M., Halliday, I., Care, C.M., Munn, L.L.: Lattice boltzmann modelling of blood cell dynamics. International Journal of Computational Fluid Dynamics 22(7), 481–492 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dzwinel, W., Boryczko, K., Yuen, D.A.: A discrete-particle model of blood dynamics in capillary vessels. Journal of Colloid and Interface Science 258(1), 163–173 (2003)

    Article  Google Scholar 

  29. Eaton, W.A., Hofrichter, J.: The biophysics of sickle cell hydroxyurea therapy. Science 268, 1142–1143 (1995)

    Article  Google Scholar 

  30. Espanol, P.: Dissipative particle dynamics for a harmonic chain: A first-principles derivation. Phys. Rev. E 53(2), 1572–1578 (1996)

    Article  MathSciNet  Google Scholar 

  31. Espanol, P.: Fluid particle model. Physical Review E 57(3), 2930–2948 (1998)

    Article  Google Scholar 

  32. Espanol, P., Warren, P.: Statistical mechanics of dissipative particle dynamics. Euro-physics Letters 30(4), 191–196 (1995)

    Article  Google Scholar 

  33. Evans, E., Mohandas, N.: Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity. Blood 70, 1443–1449 (1987)

    Google Scholar 

  34. Evans, E., Mohandas, N., Leung, A.: Static and dynamic rigidities of normal and sickle erythrocytes. major influence of cell hemoglobin concentration. The Journal of Clinical Investigation 73, 477–488 (1984)

    Article  Google Scholar 

  35. Evans, E.A., Skalak, R.: Mechanics and thermodynamics of biomembranes. CRC Press, Inc., Boca Raton, Florida (1980)

    Google Scholar 

  36. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophysical Journal 98(10), 2215–2225 (2010)

    Article  Google Scholar 

  37. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophysical Journal 100(9), 2084–2093 (2011)

    Article  Google Scholar 

  38. Fedosov, D.A., Caswell, B., Suresh, S., Karniadakis, G.E.: Quantifying the biophysical characteristics of plasmodium-falciparum-parasitized red blood cells in microcirculation. Proceedings of the National Academy of Sciences 108, 35–39 (2010)

    Article  Google Scholar 

  39. Fedosov, D.A., Pan, W., Caswell, B., Gompper, G., Karniadakis, G.E.: Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences 108(29), 11,772–11,777 (2011)

    Article  Google Scholar 

  40. Ferrone, F.A., Hofrichter, J., Eaton, W.A.: Kinetics of sickle hemoglobin polymerization: I. studies using temperature-jump and laser photolysis techniques. Journal of Molecular Biology 183(4), 591 –610 (1985)

    Article  Google Scholar 

  41. Ferrone, F.A., Hofrichter, J., Eaton, W.A.: Kinetics of sickle hemoglobin polymerization : II. a double nucleation mechanism. Journal of Molecular Biology 183(4), 611–631 (1985)

    Article  Google Scholar 

  42. Galkin, O., Chen, K., Nagel, R., Hirsch, R., Vekilov, P.: Liquid-liquid separation in solutions of normal and sickle cell hemoglobin. Proc. Natl. Acad. Sci. USA 99, 8479–8483 (2002)

    Article  Google Scholar 

  43. Galkin, O., Pan, W., Filobelo, L., Hirsch, R., Nagel, R., Vekilov, P.: Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers. Biophys. J. 93, 902–913 (2007)

    Article  Google Scholar 

  44. Galkin, O., Vekilov, P.G.: Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemolgobin in deoxy state. Journal of Molecular Biology 336, 43–59 (2004)

    Article  Google Scholar 

  45. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997)

    Article  Google Scholar 

  46. Groot, R.D., Warren, P.B.: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics 107(11), 4423–4435 (1997)

    Article  Google Scholar 

  47. Hammer, D.A., Apte, S.M.: Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys. J. 63, 35–57 (1992)

    Article  Google Scholar 

  48. Hebbel, R.P.: Adhesion of sickle red cells to endothelium: Myths and future directions. Transfusion Clinique et Biologique 15, 14–18 (2008)

    Article  Google Scholar 

  49. Hebbel, R.P., Yamada, O., Moldow, C.F., Jacob, H.S., White, J.G., Eaton, J.W.: Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. Journal of Clinical Investigation 65, 154–160 (1980)

    Article  Google Scholar 

  50. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforschung C 28, 693–703 (1973)

    Google Scholar 

  51. Herrick, J.B.: Peculiar elongated sickle-shaped red blood corpuscles in a case of severe anemia. Arch. Intern. Med. 6, 517–521 (1910)

    Article  Google Scholar 

  52. Higgins, J.M., Eddington, D.T., Bhatia, S.N., Mahadevan, L.: Sickle cell vasoocclusion and rescue in a microfluidic device. Proceedings of the National Academy of Sciences 104(51), 20,496–20,500 (2007)

    Article  Google Scholar 

  53. Hijon, C., Espanol, P., Vanden-Eijnden, E., Delgado-Buscalioni, R.: Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss. 144, 301–322 (2010)

    Article  Google Scholar 

  54. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19(3), 155–160 (1992)

    Article  Google Scholar 

  55. Hoover, R., Rubin, R., Wise, G., Warren, R.: Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood 54, 872–876 (1979)

    Google Scholar 

  56. Horiuchi, K., Ohatak, J., Hirano, Y., Asakura, T.: Morphologic studies of sickle erythro-cytes by image analysis. J. Lab. Clin. Med. 115, 613 (1990)

    Google Scholar 

  57. Hupert, C., Baumann, M.: Local membrane curvature affects spontaneous membrane fluctuation characteristics. Molecular membrane Biology 20, 155–162 (2003)

    Article  Google Scholar 

  58. Ingram, V.M.: Abnormal human haemoglobins. I. the camparison of normal human and sickle-cell haemoglobins by fingerprinting. Biochim. Biophys. Acta. 28, 539–545 (1958)

    Article  Google Scholar 

  59. Itoh, T., Chien, S., Usami, S.: Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation. Blood 85, 2245–2253 (1995)

    Google Scholar 

  60. Ivanova, M., Jasuja, R., Kwong, S., Briehl, R.W., Ferrone, F.A.: Nonideality and the nucleation of sickle hemoglobin. Biophysical Journal 79, 1016–1022 (2000)

    Article  Google Scholar 

  61. Jadhav, S., Eggleton, C.D., Konstantopoulos, K.: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophysical Journal 88, 96–104 (2005)

    Article  Google Scholar 

  62. Kaul, D.K., Chen, D., Zhan, J.: Adhesion of sickle cells to vascular endothelium is critically dependent on changes in density and shape of the cells. Blood 83, 3006–3017 (1994)

    Google Scholar 

  63. Kaul, D.K., Fabry, M.E.: In vivo studies of sickle red blood cells. Microcirculation 11, 153–165 (2004)

    Google Scholar 

  64. Kaul, D.K., Fabry, M.E., Nagel, R.L.: Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications. Proceedings of the National Academy of Sciences 86, 3356–3360 (1989)

    Article  Google Scholar 

  65. Kaul, D.K., Fabry, M.E., Windisch, P., Baez, S., Nagel, R.L.: Erythrocytes in sickle-cell-anemia are heterogeneous in their rheological and hemodynamic characteristics. Journal of Clinical Investigation 72(1), 22–31 (1983)

    Article  Google Scholar 

  66. Kaul, D.K., Finnegan, E., Barabino, G.A.: Sickle red cell-endothelium interactions. Microcirculation 16, 97–111 (2009)

    Article  Google Scholar 

  67. Kaul, D.K., Hebbel, R.P.: Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice. Journal of Clinical Investigation 106, 411–420 (2000)

    Article  Google Scholar 

  68. Kaul, D.K., Liu, X.: Rate of deoxygenation modulates rheologic behavior of sickle red blood cells at a given mean corpuscular hemoglobin concentration. Clinical Hemorheology and Microcirculation 21, 125–135 (1999)

    Google Scholar 

  69. Kaul, D.K., Xue, H.: Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77, 1353–1361 (1991)

    Google Scholar 

  70. King, M.R., Hammer, D.A.: Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes. Proceedings of the National Academy of Sciences 98(26), 14,919–14,924 (2001)

    Article  Google Scholar 

  71. Kinjo, T., Hyodo, S.A.: Equation of motion for coarse-grained simulation based on microscopic description. Phys. Rev. E 75(5), 051,109 (2007)

    Article  Google Scholar 

  72. Koren, A., Segal-Kupershmit, D., Zalman, L., Levin, C., Abu Hana, M., Palmor, H., Luder, A., Attias, D.: Effect of hydroxyurea in sickle cell anemia: a clinical trial in children and teenagers with severe sickle cell anemia and sickle cell beta-thalassemia. Pediatr. Hematol. Oncol. 16, 221–232 (1999)

    Article  Google Scholar 

  73. LaCelle, P.L.: Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells 3, 263–272 (1977)

    Google Scholar 

  74. Lei, H., Caswell, B., Karniadakis, G.E.: Direct construction of mesoscopic models from microscopic simulations. Phys. Rev. E 81, 026,704 (2010)

    Google Scholar 

  75. Lei, H., Karniadakis, G.E.: Predicting the morphology of sickle red blood cells using coarse-grained models of intracellualr aligned hemoglobin polymers. Soft Matter 8, 4507–4516 (2012)

    Article  Google Scholar 

  76. Lei, H., Karniadakis, G.E.: Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proceedings of the National Academy of Sciences 110(28), 11,326–11,330 (2013)

    Article  Google Scholar 

  77. Lei, H., Karnidakis, G.E.: Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophysical Journal 102, 185–194 (2012)

    Article  Google Scholar 

  78. Li, H., Lykotrafitis, G.: A coarse-grain molecular dynamics model for sickle hemoglobin fibers. Journal of Mechanical Behavior of Biomedical Materials 4, 162–173 (2011)

    Article  Google Scholar 

  79. Li, J., Dao, M., Lim, C., Suresh, S.: Spectrin-level modeling of the cytoskeleton and otpical tweezers stretching of the erythrocyte. Biophys J 88, 3707–3719 (2005)

    Article  Google Scholar 

  80. Li, X., Caswell, B., Karniadakis, G.E.: Effect of chain chirality on the self-assembly of sickle hemoglobin. Biophysical Journal 103(6), 1130–1140 (2012)

    Article  Google Scholar 

  81. McWhirter, J.L., Noguchi, H., Gompper, G.: Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proceedings of the National Academy of Sciences USA 106(15), 6039–6043 (2009)

    Article  Google Scholar 

  82. Mickols, W., Maestre, M.F., Iinoco, I.J., Embury, S.H.: Visualization of oriented hemoglobin s in individual erythrocytes by differential extinction of polarized light. Proceedings of the National Academy of Sciences 82, 6527–6531 (1985)

    Article  Google Scholar 

  83. Mills, J.P., Qie, L., Lim, C.T., Dao, M., Suresh, S.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst 1(3), 169–180 (2004)

    Google Scholar 

  84. Noguchi, H., Gompper, G.: Shape transitions of fluid vesicles and red blood cells in capillary flows. Proceedings of the National Academy of Sciences USA 102(40), 14,159–14,164 (2005)

    Article  Google Scholar 

  85. Pauling, L., Itano, H.A., Singer, S.J., Wells, I.C.: Sickle cell anemia, a molecular disease. Science 110, 543–548 (1949)

    Article  Google Scholar 

  86. Pivkin, I.V., Karniadakis, G.E.: Accurate coarse-grained modeling of red blood cells. Physical Review Letters 101(11), 118,105 (2008)

    Article  Google Scholar 

  87. Platt, O.S., Orkin, S.H., Dover, G., Beardsley, G.P., Miller, B., Nathan, D.G.: Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest. 74, 652–656 (1984)

    Article  Google Scholar 

  88. Quinn, D.J., Pivkin, I., Yong, S.Y., Chiam, K., Dao, M., Karniadakis, G.E., Suresh, S.: Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Annals of Biomedical Engineering 39, 1041–1050 (2011)

    Article  Google Scholar 

  89. Samuel, R.E., Salmon, E.D., Briehl, R.W.: Nucleation and growth of fibers and gel formation in sickle cell haemoglobin. Nature 345, 833–835 (1990)

    Article  Google Scholar 

  90. Samuel, R.E., Salmon, E.D., Briehl, R.W.: Nucleation and growth of fibres and gel formation in sickle cell haemoglobin. Nature 345, 833–835 (1990)

    Article  Google Scholar 

  91. Succi, S.: The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  92. Sunshine, H.R., Hofrichter, J., Eaton, W.A.: Requirements for therapeutic inhibition of sickle haemoglobin gelation. Nature 275, 238–240 (1978)

    Article  Google Scholar 

  93. Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia 1, 15–30 (2005)

    Article  Google Scholar 

  94. Turhan, A., Weiss, L.A., Mohanda, N., Coller, B.S., Frenette, P.S.: Primary role for adherent leukocytes in sickle cell vascular occlusion: A new paradigm. Proceedings of the National Academy of Sciences 99, 3047–3051 (2002)

    Article  Google Scholar 

  95. Usami, S., Chien, S., Scholtz, P.M., Bertles, J.F.: Effects of deoxygenation on blood rheology in sickle cell disease. Microvascular Research 9, 324–334 (1975)

    Article  Google Scholar 

  96. Uzunova, V., Pan, W., Galkin, O., Vekilov, P.: Free heme and the polymerization of sickle cell hemoglobin. Biophys. J. 99, 1976–1985 (2010)

    Article  Google Scholar 

  97. Vekilov, P., Galkin, O., Pettitt, B., Choudhury, N., Nagel, R.: Determination of the transition-state entropy for aggregation suggests how the growth of sickle cell hemoglobin polymers can be slowed. J. Mol. Biol. 377, 882–888 (2008)

    Article  Google Scholar 

  98. Wang, J.G., Turner, M.S., Agarwal, G., Kwong, S., Jesephs, R., Ferrone, F.A., Briehl, R.W.: Micromechanics of isolated sickle cell hemoglobin fiers: bending moduli and persistence lengths. Journal of Molecular Biology 315, 601–612 (2002)

    Article  Google Scholar 

  99. Zhelev, D.V., Needham, D., Hochmuth, R.M.: Role of the membrane cortex in neutrophil deformation in small pipets. Biophysical Journal 67, 696–705 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lei, H., Karniadakis, G.E. (2015). Multiscale Modeling of Sickle Cell Anemia. In: Quarteroni, A. (eds) Modeling the Heart and the Circulatory System. MS&A, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-05230-4_5

Download citation

Publish with us

Policies and ethics