Skip to main content

Two Classes of Metrizable Spaces \(\ell _{c}\)-Invariant

  • Conference paper
  • First Online:
Descriptive Topology and Functional Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 80))

Abstract

Many properties of a Tychonoff space \(X\) have been characterized by properties of \(C_{p}(X)\) or \(C_{c}(X)\), the spaces of continuous real-valued functions on \(X\) provided with the topology of pointwise convergence or with the compact-open topology, respectively. The question of Arhangel’skii about preservation of metrizability by \(\ell _{p}\)-equivalence in the class of first countable spaces has been partially answered by Valov in the class of those first countable spaces that are Čech complete. The preservation of complete metrizability by \(\ell _{p}\)-equivalence in the class of metrizable spaces has been obtained by Baars, de Groot and Pelant. The \(\ell _{c}\)-invariance of separable metrizability and separable complete metrizability (i.e., Polish spaces) in the class of spaces of pointwise countable type has been considered very recently by K a̧ kol, López-Pellicer and Okunev. These two \(\ell _{c}\)-invariant properties were the aim of the talk given by the author in the First Meeting in Topology and Functional Analysis, dedicated to Professor Jerzy K a̧ kol on the occasion of his sixty birthday, September 27–28, in Elche (Spain). Here it is this talk with the proofs of properties needed to obtain these two \(\ell _{c}\)-invariant properties. As additional motivation for non specialist readers three classical \(C(X)\) theorems related with \(\ell \)-equivalence’s questions are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arhangel’skii, A.V.: Bicompact sets and the topology of spaces. Trudy Moskov. Mat. Obšč. 13, 3–55 (1965) (in Russian)

    Google Scholar 

  2. Arhangel’skii, A.V.: On linear homomorphisms of function spaces. Dokl. Akad. Nauk SSSR. 264, 1289–1292 (1982)

    MathSciNet  Google Scholar 

  3. Arhangel’skii, A.V.: A survey of \(C_{p}\)-theory. Questions Answers Gen. Topology. 5, 1–109 (1987)

    MathSciNet  Google Scholar 

  4. Arhangel’skii, A.V.: General Topology III. Encyclopaedia of Mathematical Sciences, 51. Springer, Berlin (1991)

    Google Scholar 

  5. Arhangel’skii, A.V.: Topological Function Spaces. Mathematics and its Applications 78. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  6. Baars, J., de Groot, J., Pelant, J.: Function spaces of completely metrizable spaces. Trans. Amer. Math. Soc. 340, 871–883 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christensen, J.P.R.: Topology and Borel Structure. North-Holland Mathematics Studies 10, North-Holland, Amsterdam (1974)

    Google Scholar 

  8. Drewnowski, L.: Resolutions of topological linear spaces and continuity of linear maps. J. Math. Anal. Appl. 335, 1177–1195 (2007)

    Google Scholar 

  9. Engelking, R.: General Topology. Monografie Matematiczne 60. PWN, Warszawa (1975)

    Google Scholar 

  10. Ferrando, J.C., Ka̧kol, J.: On precompact sets in spaces \(C_{c}(X)\). Georgian Math. J. 20, 247–254 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ka̧kol, J., López-Pellicer, M., Okunev, O.: Compact covers and functions spaces. J. Math. Anal. Appl. 411, 372–380 (2014)

    Google Scholar 

  12. Ka̧kol, J., Kubiś, W., López-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics 24. Springer, New York (2011)

    Google Scholar 

  13. Köthe, G.: Topological Vector Spaces. Springer, Berlin (1969)

    Book  MATH  Google Scholar 

  14. McCoy, R.A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Lecture Notes in Mathematics 1315. Springer (1988)

    Google Scholar 

  15. Michael, E.: \(\aleph _{0}\)-spaces. J. Math. Mech. 15, 983–1002 (1966)

    MATH  MathSciNet  Google Scholar 

  16. Nachbin, L.: Topological vector spaces of continuous functions. Proc. Nat. Acad. Sci. 40, 471–474 (1945)

    Article  MathSciNet  Google Scholar 

  17. Nagata, J.: On lattices of functions on topological spaces and of functions on uniform spaces. Osaka Math. J. 1, 166–181 (1949)

    MATH  MathSciNet  Google Scholar 

  18. Okunev, O.: A relation between spaces implied by their \(t\)-equivalence. Topology Appl. 158, 2158–2164 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pérez Carreras, P.; Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies 131. North-Holland, Amsterdam (1987)

    Google Scholar 

  21. Shirota, T.: On locally convex vector spaces of continuous functions. Proc. Japan Acad. 30, 294–298 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tkachuk, V.V., Shakhmatov, D.B.: When is space \(C_{p}(X)\) \(\sigma \)-countably compact? Moscow Univ. Math. Bull. 42, 23–26 (1987)

    MATH  Google Scholar 

  23. Tkachuk, V.V.: A space \(C_{p}(X)\) is dominated by irrationals if and only if it is \(K\)-analytic. Acta Math. Hungar. 107, 253–265 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Uspenski, V.: On the topology of a free locally convex space. Soviet Math. Dokl. 27, 781–785 (1983)

    Google Scholar 

  25. Valov, V.: Function spaces. Topology Appl. 81, 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Velichko, N.V.: The Lindelöf property is \(l\)-invariant. Topology Appl. 89, 277–283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Supported by Generalitat Valenciana, Conselleria d’Educació Cultura i Esport, Spain, Grant PROMETEO/2013/058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel López-Pellicer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

López-Pellicer, M. (2014). Two Classes of Metrizable Spaces \(\ell _{c}\)-Invariant. In: Ferrando, J., López-Pellicer, M. (eds) Descriptive Topology and Functional Analysis. Springer Proceedings in Mathematics & Statistics, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-05224-3_6

Download citation

Publish with us

Policies and ethics