Skip to main content

Compactness and Distances to Spaces of Continuous Functions and Fréchet Spaces

  • Conference paper
  • First Online:
Book cover Descriptive Topology and Functional Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 80))

  • 1257 Accesses

Abstract

In recent years, several quantitative counterparts for several classical such as Krein-S̆mulyan, Eberlein-S̆mulyan, Grothendieck, etc. have been proved by different authors. These new versions strengthen the original theorems and lead to new problems and applications in topology and analysis. In this survey, we present several of these quantitative versions of theorems about compactness in Banach spaces with the weak topology, Fréchet spaces with the weak topology and spaces of continuous functions with the pointwise convergence topology. For example if \(H\) is a subset of a Banach space \(E\), and \(w^*\) is the weak* topology in \(E^{\prime \prime }\), the index \(k(H):=\sup \{d(x^{**},E),x^{**}\in \overline{H}^{w^{*}}\}\) is zero if and only if \(H\) is relatively compact in \((E,w)\). Then \(k(H)\) measures how far is \(H\) from being relatively compact in \((E,w)\). The following inequalty \(k(co(H))\le 2 k(H)\) is a quantitative version of the Krein-S̆mulian theorem about the \(w\)-relative compactness of the convex hull of a weakly compact set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angosto, C., Cascales, B.: The quantitative difference between countable compactness and compactness. J. Math. Anal. Appl. 343(1), 479–491 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156, 1412–1421 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Angosto, C., Ka̧kol, J., López-Pellicer, M.: A quantitative approach to weak compactness in Fréchet spaces and spaces \(C(X)\). J. Math. Anal. Appl. 403(1), 13–22 (2013)

    Google Scholar 

  4. Angosto, C., Ka̧kol, J., Kubzdela, A., López-Pellicer, M.: A quantitative version of Krein’s theorems for Fréchet spaces. Arch. Math. (Basel) 101(1), 65–77 (2013)

    Google Scholar 

  5. Astala, K., Tylly, H.: Seminorms related to weak compactness to Tauberian operators. Math. Proc. Cambridge Philos. Soc. 107, 367–375 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benyamini, Y., Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1. American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, RI Springer-Verlag, New York (2000)

    Google Scholar 

  7. Cascales, B., Marciszewski, W., Raja, M.: Distance to spaces of continuous functions. Topology Appl. 153, 2303–2319 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eberlein, F.W.: Weak compactness in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 33, 51–53 (1947)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fabian, M., Hájek, P., Montesinos, V., Zizler, V.: A quantitative version of Krein’s theorem. Rev. Mat. Iberoam. 21, 237–248 (2005)

    Article  MATH  Google Scholar 

  10. Floret, K.: Weakly compact sets. Lecture Notes in Mathematics, vol. 801, Springer, Berlin (1980)

    Google Scholar 

  11. Granero, A.S.: An extension of the Krein-Šmulian theorem. Rev. Mat. Iberoam. 22, 93–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grothendieck, A.: Critères de compacité dans les espaces fonctionnels généraux. Amer. J. Math. 74, 168–186 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jameson, G.J.O.: Topology and normed spaces. Chapman and Hall, London (1974)

    MATH  Google Scholar 

  14. Kelley, J.L., Namioka, I.: Linear topological spaces. Graduate Texts in Mathematics vol. 36, Springer-Verlag, New York (1976)

    Google Scholar 

  15. Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. London Math. Soc. 36, 143–152 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pol, R.: On a question of H. H. Corson and some related problems. Fund. Math. 109(2), 143–154 (1980)

    MATH  MathSciNet  Google Scholar 

  17. Pryce, J.D.: A device of R. J. Whitley’s applied to pointwise compactness in spaces of continuous functions. Proc. London Math. Soc. 23(3), 532–546 (1971)

    Google Scholar 

  18. Šmulian, V.: Über lineare topologische Räume. Rec. Math. (Mat. Sbornik) N. S. 7(49), 425–448 (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Angosto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Angosto, C., López-Pellicer, M. (2014). Compactness and Distances to Spaces of Continuous Functions and Fréchet Spaces. In: Ferrando, J., López-Pellicer, M. (eds) Descriptive Topology and Functional Analysis. Springer Proceedings in Mathematics & Statistics, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-05224-3_5

Download citation

Publish with us

Policies and ethics