Skip to main content

News Trader, Liquidity and Transaction Cost

  • Chapter
  • First Online:
Market Microstructure and Nonlinear Dynamics

Abstract

In this paper we propose a model to find an optimal trading strategy for news trader who submits large market orders on released news (such as earnings or dividend announcement). In this model, we characterize different market situations by allowing the underlying price dynamics follow either a Brownian motion or geometric Brownian motion. We show the analytical properties of our model in finding the optimal strategy of news trader. Based on the analytical solution, we conduct a simulation study to show the performance of our proposed optimal trading strategy comparing with alternative strategies by using volume weighted average price (VWAP) as the during-trading cost benchmark. Our results show that the performance of the implemented trading strategy is significantly superior comparing with the alternative trading strategies, particularly when the market turns to be extremely bullish or bearish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfonsi, A., Fruth, A., & Schied, A. (2010). Optimal execution strategies in limit order books with general shape functions. Quantitative Finance, 10(2), 143–157.

    Article  Google Scholar 

  • Almgren, R. (2003). Optimal execution with nonlinear impact functions and trading enhanced risk. Applied Mathematical Finance, 10, 1–18.

    Article  Google Scholar 

  • Almgren, R., & Chriss, N. (1999). Value under liquidation. Risk, 12, 61–63.

    Google Scholar 

  • Almgren, R., & Chriss, N. (2000). Optimal execution of portfolios. Journal of Risk, 3(2), 5–39.

    Google Scholar 

  • Almgren, R., & Lorenz, J. (2007). Adaptive arrival price. In B. Bruce (Ed.), Algorithmic trading III: Precision, control, execution. New York: Institutional Investor Journals.

    Google Scholar 

  • Balduzzi, P., Elton, E. J., & Green, T. (2001). Economic news and bond prices: Evidence from the US treasury market. Journal of Financial and Quantitative Analysis, 36(4), 523–543.

    Article  Google Scholar 

  • Berkowitz, S. A., Logue, D. E., & Noser, E. A. (1988). The total costs of transacting on the NYSE. Journal of Finance, 43, 97–112.

    Article  Google Scholar 

  • Bertsimas, D., & Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets, 1, 1–50.

    Article  Google Scholar 

  • Goldstein, M. A., Irvine, P., Kandel, E., & Wienern, Z. (2009). Brokerage commissions and institutional trading patterns. Review of Financial Studies, 22(12), 5175–5212.

    Article  Google Scholar 

  • Hu, G. (2009). Measures of implicit trading costs and buy-sell asymmetry. Journal of Financial Markets, 12, 418–437.

    Article  Google Scholar 

  • Huberman, G., & Stanzel, W. (2004). Arbitrage-free price update and price-impact functions. Econometrica, 72(4), 1247–1275.

    Article  Google Scholar 

  • Kissell, R., & Glantz, M. (2003). Optimal trading strategies: Quantitative approaches for managing market impact and trading risk. New York: Amacom.

    Google Scholar 

  • Lee, C., Mucklow, B., & Ready, M. (1993). Spreads, depths and the impact of earnings information: An intraday analysis. The Review of Financial Studies, 6(2), 345–374.

    Article  Google Scholar 

  • Madhavan, A. (2002). VWAP strategies. In B. Bruce (Ed.), Investment guides, transaction performance: The changing face of trading (pp. 32–38). New York: Institutional Investor Inc.

    Google Scholar 

  • Obizhaeva, A., & Wang, J. (2006). Optimal trading strategy and supply/demand dynamics. Working paper.

    Google Scholar 

  • Patell, J. M., & Wolfson, M. A. (1984). The intraday speed of adjustment of stock prices to earnings and dividend announcements. Journal of Financial Economics, 13, 223–252.

    Article  Google Scholar 

  • Schöneborn, T., & Schied, A. (2009). Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets. Finance and Stochastics, 13, 181–204.

    Article  Google Scholar 

  • Sun, E. W., Kruse, T., & Yu, M-T. (2013). High frequency trading, liquidity, and execution cost. Annals of Operations Research. doi:10.1007/s10479-013-1382-8.

  • Sun, E. W., Rezania, O., Rachev, S., & Fabozzi, F. (2011). Analysis of the intraday effects of economic releases on the currency market. Journal of International Money and Finance, 30(4), 692–707.

    Article  Google Scholar 

  • Ting, C. (2006). Which daily price is less noisy? Financial Management, 35, 81–95.

    Article  Google Scholar 

  • Werner, I. M. (2003). NYSE order flow, spreads, and information. Journal of Financial Markets, 6, 309–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Sun .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof of Proposition 1

We prove Proposition 1 by induction. For the induction basis at time t N  = T we have

$$ \begin{array}{l}{J}_T^i\left({X}_T,{D}_T,{F}_T, T\right)=\left({F}_T+\frac{s}{2}\right){X}_T+\left[{\lambda}_0\right({X}_0-{X}_{t_m}\left)+{\lambda}_i\right({X}_{t_m}-{X}_T\left)+{D}_T+\frac{X_T}{2{q}_i}\right]{X}_T\\ {}\kern0.72em =\left({F}_T+\frac{s}{2}\right){X}_T+{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_m}+{X}_{t_m}\right){X}_T\\ {}\kern3.3em +\left(\frac{1}{2{q}_i}-{\lambda}_i\right){X}_T^2+{X}_T{D}_T.\end{array} $$

We then obtain the optimization problem at the point t n with the following form

$$ \begin{array}{l}{J}_{t_n}^i\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)\\ {}\kern1.08em =\overset{ m in}{x_{t_n}}\left\{\left[,\right(,{F}_{t_n}+\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_m},\left),+,{\lambda}_i,\right(,{X}_{t_m},-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_i},\right],{x}_{t_n}\right.\\ {}\left.+,{E}_{t_n},{J}_{t_{n+1}}^i,\left(,{X}_{t_n},-,{x}_{t_n},,,\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right),{e}^{-{\rho}_i\tau},,,{F}_{t_{n+1}},,,{t}_{n+1},\right)\right\}\\ {}=\overset{ m in}{x_{t_n}}\left\{\left[,\right(,{F}_{t_n}+\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_m},\left),+,{\lambda}_i,\right(,{X}_{t_m},-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_i},\right],{x}_{t_n}\right.\\ {}\left({F}_{t_n}+\frac{s}{2}\right)\left({X}_{t_n}-{x}_{t_n}\right)+{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_m}+{X}_{t_m}\right)\left({X}_{t_n}-{x}_{t_n}\right)+{\alpha}_{n+1}^i\left({X}_{t_n}-{x}_{t_n}\right){}^2\\ {}\left.+,{\beta}_{n+1}^i,\left({X}_{t_n}-{x}_{t_n}\right),\left(,{D}_{t_n},+,{\kappa}_i,{x}_{t_n},\right),{e}^{-{\rho}_i\tau},+,{\gamma}_{n+1}^i,\left(,{D}_{t_n},+,{\kappa}_i,{x}_{t_n},\right),{}^2,{e}^{-2{\rho}_i\tau}\right\}.\end{array} $$
(18)

We differentiate Eq. 18 with respect to \( {x}_{t_n} \) and set it equal to zero to find the optimal solution

$$ {x}_{t_n}=-\frac{1}{2}{\delta}_{n+1}^i\left({X}_{t_n}\left(-{\lambda}_i-2{\alpha}_{n+1}^i+{\beta}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i\right)+{D}_{t_n}\left(1-{\beta}_{n+1}^i{e}^{-{\rho}_i\tau}+2{\gamma}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i\right)\right), $$

with

$$ {\delta}_{n+1}^i={\left(\frac{1}{2{q}_i}+{\alpha}_{n+1}^i-{\beta}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i+{\gamma}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i^2\right)}^{-1}. $$

We find that the optimal value function has the form given by Eq. 2 and the coefficients given by Eqs. 47. This completes the induction for t n ∈ {t m + 1, …, t N }. Since the reaction to the released news is uncertain, we change parameters to describe the market reaction. At t m we face the following problem

$$ \begin{array}{l}{J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)=\overset{min}{x_{t_n}}{E}_{t_n}\left\{\left[,\right(,{F}_{t_n},+,\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_u},\right],{x}_{t_n}\right.\\ {}\left.+,{J}_{t_{n+1}},\left(,{X}_{t_n},-,{x}_{t_n},,,\left({D}_{t_n}+{\kappa}_u{x}_{t_n}\right),{e}^{-{\rho}_u\tau},,,{F}_{t_{n+1}},,,{t}_{n+1},\right),,\right\}\end{array} $$
(19)

where q u , κ u , and ρ u should indicate that the current value of q and the future value of κ and ρ are unknown for us.

Because the released news is modeled as a discrete random variable, we get

$$ \begin{array}{l}{E}_{t_n}{J}_{t_{n+1}}\left({X}_{t_n}-{x}_{t_n},\left({D}_{t_n}+{\kappa}_u{x}_{t_n}\right){e}^{-{\rho}_u\tau},{F}_{t_{n+1}},{t}_{n+1}\right)\\ {}\kern0.96em ={\displaystyle \sum_{i=1}^r{p}_i}\times {J}_{t_{n+1}}^i\left({X}_{t_n}-{x}_{t_n},\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right){e}^{-{\rho}_i\tau},{F}_{t_n},{t}_{n+1}\right).\end{array} $$
(20)

We define

$$ \frac{1}{\tilde{q}}:={\displaystyle \sum_{i=1}^r{p}_i}\times \frac{1}{q_i}, $$

and combining Eq. 19 with Eq. 20, we then find

$$ \begin{array}{l}{J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)=\overset{min}{x_{t_n}}\left\{\left[,\right(,{F}_{t_n},+,\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_n},\Big)\right.+{D}_{t_n}+\frac{x_{t_n}}{2\tilde{q}}\Big]{x}_{t_n}+{\alpha}_{n+1}^i{\left({X}_{t_n}-{x}_{t_n}\right)}^2\\ {}+{\displaystyle \sum_{i=1}^r{p}_i}\times \left(\left({F}_{t_n}+\frac{s}{2}\right)\right({X}_{t_n}-{x}_{t_n}\Big)\\ {}+{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_n}+{X}_{t_n}\right)\left({X}_{t_n}-{x}_{t_n}\right)+{\beta}_{n+1}^i\left({X}_{t_n}-{x}_{t_n}\right)\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right){e}^{-{\rho}_i\tau}\left.+,{\gamma}_{n+1}^i,\left(,{D}_{t_n},+,{\kappa}_i,{x}_{t_n},\right),{}^2,{e}^{-2{\rho}_i\tau},\Big)\right\}.\end{array} $$
(21)

We differentiate Eq. 21 and set it equal to zero to find the optimal solution

$$ {x}_{t_n}=-\frac{1}{2}{\delta}_{n+1}^0\left({\displaystyle \sum_{i=1}^r{p}_i}\times \left[{X}_{t_n}\left(-{\lambda}_i-2{\alpha}_{n+1}^i+{\beta}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}\right)+{D}_{t_n}\left(1-{\beta}_{n+1}^i{e}^{-{\rho}_i\tau}+2{\gamma}_{n+1}^i{\kappa}_i{e}^{-2{\rho}_i\tau}\right)\right]\right), $$
(22)

with

$$ {\delta}_{n+1}^0={\left[{\displaystyle \sum_{i=1}^r{p}_i}\times \left(\frac{1}{2{q}_i}+{\alpha}_{n+1}^i-{\beta}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}+{\gamma}_{n+1}^i{\kappa}_i^2{e}^{-2{\rho}_i\tau}\right)\right]}^{-1}. $$

Inserting Eq. 22 into Eq. 23, we find that the optimal value has the form given by Eq. 3 with the coefficients given by Eqs. 47, which is the form

$$ {J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)={X}_{t_n}\times \left(\left({F}_{t_n}+\frac{s}{2}\right)+{\lambda}_0{X}_0\right)+{\alpha}_n^0{X}_{t_n}^2+{\beta}_n^0{D}_{t_n}{X}_{t_n}+{\gamma}_n^0{D}_{t_n}^2. $$

Since the optimal value function has the same form as the optimal value function obtained by Sun et al. (2013), we can use their result to obtain the proof for the remainder of the Proposition 1.

Appendix 2: Proof of Proposition 2

For the induction basis at time t N  = T we have

$$ \begin{array}{l}{J}_T^i\left({X}_T,{D}_T,{F}_T, T\right)=\left({F}_T+\frac{s}{2}\right){X}_T+\left[{\lambda}_0\right({X}_0-{X}_{t_m}\left)+{\lambda}_i\right({X}_{t_m}-{X}_T\left)+{D}_T+\frac{X_T}{2{q}_i}\right]{X}_T\\ {}\kern1.08em =\left({F}_T+\frac{s}{2}\right){X}_T+{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_m}+{X}_{t_m}\right){X}_T\\ {}+\left(\frac{1}{2{q}_i}-{\lambda}_i\right){X}_T^2+{X}_T{D}_T.\end{array} $$

For the induction step for some t n  ∈ {t m + 1, …, t N − 1} we get

$$ \begin{array}{l}{J}_{t_n}^i\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)=\overset{ m in}{x_{t_n}}\left\{\left[,\right(,{F}_{t_n},+,\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_m},\left),+,{\lambda}_i,\right(,{X}_{t_m},-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_i},\right],{x}_{t_n}\right.\\ {}\left.+,{E}_{t_n},{J}_{t_{n+1}}^i,\left(,{X}_{t_n},-,{x}_{t_n},,,\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right),{e}^{-{\rho}_i\tau},,,{F}_{t_{n+1}},,,{t}_{n+1},\right)\right\}\\ {}=\overset{ m in}{x_{t_n}}\left\{\left[,\right(,{F}_{t_n}+\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_m},\left),+,{\lambda}_i,\right(,{X}_{t_m},-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_i},\right],{x}_{t_n}\right.\\ {}+\left({a}_i\times {a}_i^{N-\left( n+1\right)}{F}_n+\frac{s}{2}\right)\left({X}_{t_n}-{x}_{t_n}\right)+{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_m}+{X}_{t_m}\right)\left({X}_{t_n}-{x}_{t_n}\right)\\ {}+{b}_{n+1}^i{\left({X}_{t_n}-{x}_{t_n}\right)}^2\\ {}+{c}_{n+1}^i{\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right)}^2{e}^{-2{\rho}_i\tau}+{d}_{n+1}^i{v}_i{F}_{t_n}^2+{g}_{n+1}^i\left({X}_{t_n}-{x}_{t_n}\right)\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right){e}^{-{\rho}_i\tau}\\ {}\left.+,{h}_{n+1}^i,\left({X}_{t_n}-{x}_{t_n}\right),{a}_i,{F}_{t_n},+,{l}_{n+1}^i,\left(,{D}_{t_n},+,{\kappa}_i,{x}_{t_n},\right),{e}^{-{\rho}_i\tau},{a}_i,{F}_{t_n}\right\}.\end{array} $$
(23)

To obtain the minimum, we differentiate Eq. 23 with respect to \( {x}_{t_n} \)

$$ \begin{array}{l}\frac{\partial J}{\partial {x}_{t_n}}=\left({F}_{t_n}+\frac{s}{2}\right)+{\lambda}_0\left({X}_0-{X}_{t_m}\right)+{\lambda}_i\left({X}_{t_m}-{X}_{t_n}\right)+{D}_{t_n}+\frac{x_{t_n}}{q_i}\\ {}\kern0.36em -\left({a}_i^{N- n}{F}_n+\frac{s}{2}\right)-{\lambda}_i\left(\frac{\lambda_0}{\lambda_i}{X}_0-\frac{\lambda_0}{\lambda_i}{X}_{t_m}+{X}_{t_m}\right)-2{b}_{n+1}^i\left({X}_{t_n}-{x}_{t_n}\right)\\ {}\kern0.36em +2{\kappa}_i{c}_{n+1}^i\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right){e}^{-2{\rho}_i\tau}+{g}_{n+1}^i{e}^{-{\rho}_i\tau}\left[{\kappa}_i\left({X}_{t_n}-{x}_{t_n}\right)-\right({D}_{t_n}+{\kappa}_i{x}_{t_n}\left)\right]\\ {}\kern0.36em -{h}_{n+1}^i{a}_i{F}_{t_n}+{l}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}{a}_i{F}_{t_n}\\ {}\kern1.44em ={x}_{t_n}\left(\frac{1}{q_i}+2{b}_{n+1}^i-2{g}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}+{c}_{n+1}^i2{\kappa}_i^2{e}^{-2{\rho}_i\tau}\right)\\ {}\kern0.36em +{X}_{t_n}\left(-{\lambda}_i-2{b}_{n+1}^i+{g}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i\right)+{D}_{t_n}\left(1+{c}_{n+1}^i2{\kappa}_i{e}^{-2{\rho}_i\tau}-{g}_{n+1}^i{e}^{-{\rho}_i\tau}\right)\\ {}\kern0.36em +{F}_{t_n}\left(1-{a}_i^{N- n}-{h}_{n+1}^i{a}_i+{l}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}{a}_i\right).\end{array} $$
(24)

Setting \( \frac{\partial J}{\partial {x}_{t_n}}\overset{!}{=}0 \) for Eq. 24 to obtain the optimal choice

$$ {x}_{t_n}= o{D}_{t_n}+ w{X}_{t_n}+ u{F}_{t_n}, $$
(25)

where

$$ \begin{array}{l} o\kern0.96em =\kern0.48em -\frac{1}{2}{\delta}_{n+1}^i\left(1+{c}_{n+1}^i2{\kappa}_i{e}^{-2{\rho}_i\tau}-{g}_{n+1}^i{e}^{-{\rho}_i\tau}\right),\\ {} w\kern0.85em =\kern0.48em -\frac{1}{2}{\delta}_{n+1}^i\left(-{\lambda}_i-2{b}_{n+1}^i+{g}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i\right),\\ {} u\kern0.85em =\kern0.48em -\frac{1}{2}{\delta}_{n+1}^i\left(1-{a}_i^{N- n}-{h}_{n+1}^i{a}_i+{l}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}{a}_i\right),\\ {}{\delta}_{n+1}^i=\kern0.48em {\left(\frac{1}{2{q}_i}+{b}_{n+1}^i-{g}_{n+1}^i{\kappa}_i{e}^{-{\rho}_i\tau}+{c}_{n+1}^i{\kappa}_i^2{e}^{-2{\rho}_i\tau}\right)}^{-1}.\end{array} $$

Putting Eq. 25 into Eq. 23 we obtain the optimal value function given by Eq. 9 and find the coefficients given by Eqs. 1117. This completes the induction for t n  ∈ {t m + 1, …, t N }. We are unsure about market reaction to the released news and the following change of the parameters that describe the market. At t m we face the following problem

$$ \begin{array}{l}{J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)=\overset{min}{x_{t_n}}{E}_{t_n}\left\{\left[,\right(,{F}_{t_n},+,\frac{s}{2},\left),+,{\lambda}_0,\right(,{X}_0,-,{X}_{t_n},\left),+,{D}_{t_n},+,\frac{x_{t_n}}{2{q}_u},\right],{x}_{t_n}\right.\\ {}\left.+,{J}_{t_{n+1}},\left(,{X}_{t_n},-,{x}_{t_n},,,\left({D}_{t_n}+{\kappa}_u{x}_{t_n}\right),{e}^{-{\rho}_u\tau},,,{F}_{t_{n+1}},,,{t}_{n+1},\right)\right\}\end{array} $$
(26)

where q u , κ u , a u and ρ u should indicate that the current value of q and the future value of κ, ρ, and a u are unknown.

Because the released news is modeled as a discrete random variable, we obtain

$$ \begin{array}{l}\kern0.6em {E}_{t_n}{J}_{t_{n+1}}\left({X}_{t_n}-{x}_{t_n},\left({D}_{t_n}+{\kappa}_u{x}_{t_n}\right){e}^{-{\rho}_u\tau},{a}_u{F}_{t_{n+1}},{t}_{n+1}\right)\\ {}={\displaystyle \sum_{i=0}^r{p}_i}\times {J}_{t_{n+1}}^i\left({X}_{t_n}-{x}_{t_n},\left({D}_{t_n}+{\kappa}_i{x}_{t_n}\right){e}^{-{\rho}_i\tau},{a}_i{F}_{t_n},{t}_{n+1}\right).\end{array} $$
(27)

We use \( {a}_i={e}^{\mu_i\tau} \) and \( {v}_i={e}^{\left(2{\mu}_i+{\sigma}_i^2\right)\times \tau} \) and define

$$ \frac{1}{\overline{q}}={\displaystyle \sum_{i=1}^r{p}_i}\times \frac{1}{q_i},\kern0.33em \overline{a}={\displaystyle \sum_{i=1}^r{p}_i}\times \left({a}_i^{N+1-\left( m+1\right)}\right),\kern0.33em \overline{\lambda}={\displaystyle \sum_{i=1}^r{p}_i}\times {\lambda}_i. $$

Combining Eq. 26 and Eq. 27 with this definitions, we find that

$$ \begin{array}{l}\kern0.72em {J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)\\ {}=\left[\left({F}_{t_n}+\frac{s}{2}\right)+{\lambda}_0\right({X}_0-{X}_{t_n}\left)+{D}_{t_n}+\frac{x_{t_n}}{2\overline{q}}\right]{x}_{t_n}\\ {}\kern-1em +\left({F}_n\overline{a}+\frac{s}{2}\right)\left({X}_{t_n}-{x}_{t_n}\right)+\overline{\lambda}\left(\frac{\lambda_0}{\overline{\lambda}}{X}_0-\frac{\lambda_0}{\overline{\lambda}}{X}_{t_n}+{X}_{t_n}\right)\left({X}_{t_n}-{x}_{t_n}\right)\kern-2.5em +\left({\displaystyle \sum_{i=1}^r{p}_i}\times {b}_{n+1}^i\right)\left({X}_{t_n}-{x}_{t_n}\right){}^2\\ {}\kern0.6em +{D}_{t_n}^2\left({\displaystyle \sum_{i=1}^r{p}_i}\times {c}_{n+1}^i{e}^{-2{\rho}_i\tau}\right)\kern0.5em +2{D}_{t_n}{x}_{t_n}\left({\displaystyle \sum_{i=1}^r{p}_i}\times {c}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i\right)+{x}_{t_n}^2\left({\displaystyle \sum_{i=1}^r{p}_i}\times {c}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i^2\right)\\ {}+\left({\displaystyle \sum_{i=1}^r{p}_i}\times {d}_{n+1}^i{v}_i\right){F}_{t_n}^2+\left({X}_{t_n}-{x}_{t_n}\right)\left({D}_{t_n}\right({\displaystyle \sum_{i=1}^r{p}_i}\times {g}_{n+1}^i{e}^{-{\rho}_i\tau}\left)\kern0.5em +\right({\displaystyle \sum_{i=1}^r{p}_i}\times {g}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i\left){x}_{t_n}\right)\\ {}\kern0.6em +\left({\displaystyle \sum_{i=1}^r{p}_i}\times {h}_{n+1}^i{a}_i\right)\left({X}_{t_n}-{x}_{t_n}\right){F}_{t_n}\kern0.5em +{D}_{t_n}{F}_{t_n}\left({\displaystyle \sum_{i=1}^r{p}_i}\times {l}_{n+1}^i{a}_i{e}^{-{\rho}_i\tau}\right)+{x}_{t_n}{F}_{t_n}\left({\displaystyle \sum_{i=1}^r{p}_i}\times {l}_{n+1}^i{a}_i{e}^{-{\rho}_i\tau}{\kappa}_i\right).\end{array} $$
(28)

We then obtain the solution that minimizes Eq. 28 is

$$ \begin{array}{c}{x}_m=-\frac{1}{2}{\delta}_{m+1}\Big(\left(1+2{\displaystyle \sum_{i=1}^r{p}_i}\times {c}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i-{\displaystyle \sum_{i=1}^r{p}_i}\times {g}_{n+1}^i{e}^{-{\rho}_i\tau}\right){D}_{t_m}\\ {}+\left(-\overline{\uplambda}-2{\displaystyle \sum_{i=1}^r{p}_i}\times {b}_{n+1}^i+{\displaystyle \sum_{i=1}^r{p}_i}\times {g}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i\right){X}_{t_m}\\ {}+\left(1-\overline{a}-{\displaystyle \sum_{i=1}^r{p}_i}\times {h}_{n+1}^i{a}_i+{\displaystyle \sum_{i=1}^r{p}_i}\times {l}_{n+1}^i{a}_i{e}^{-{\rho}_i\tau}{\kappa}_i\right){F}_{t_m}\Big),\end{array} $$
(29)

With

$$ {\delta}_{m+1}={\left(\frac{1}{2\overline{q}}+{\displaystyle \sum_{i=1}^r{p}_i}\times {b}_{n+1}^i-{\displaystyle \sum_{i=1}^r{p}_i}\times {g}_{n+1}^i{e}^{-{\rho}_i\tau}{\kappa}_i+{\displaystyle \sum_{i=1}^r{p}_i}\times {c}_{n+1}^i{e}^{-2{\rho}_i\tau}{\kappa}_i^2\right)}^{-1}. $$

Inserting Eq. 29 into Eq. 28, we find the optimal value function given by Eq. 9 and the coefficients given by Eqs. 1117. For the induction step for some t n  ∈ {t 0, …, t m − 1} we get

$$ \begin{array}{c}{J}_{t_n}^0\left({X}_{t_n},{D}_{t_n},{F}_{t_n},{t}_n\right)=\overset{ m in}{x_{t_n}}\left\{\right[\left({F}_{t_n}+\frac{s}{2}\right)+{\uplambda}_0\left({X}_0-{X}_{t_n}\right)+{D}_{t_n}+\frac{x_{t_n}}{2{q}_0}\Big]{x}_{t_n}\\ {}+{E}_{t_n}{J}_{t_{n+1}}^0\left({X}_{t_n}-{x}_{t_n},\left({D}_{t_n}+{\kappa}_0{x}_{t_n}\right){e}^{-{\rho}_0\tau},{F}_{t_{n+1}},{t}_{n+1}\right)\Big\}\\ {}=\overset{ m in}{x_{t_n}}\left\{\right[\left({F}_{t_n}+\frac{s}{2}\right)+{\uplambda}_0\left({X}_0-{X}_{t_n}\right)+{D}_{t_n}+\frac{x_{t_n}}{2{q}_0}\Big]{x}_{t_n}\\ {}+\left({a}_0\times {a}_0^{m-\left( n+1\right)}\times \overline{a}{F}_n+\frac{s}{2}\right)\left({X}_{t_n}-{x}_{t_n}\right)+{\uplambda}_0{X}_0\left({X}_{t_n}-{x}_{t_n}\right)+{b}_{n+1}^0\left({X}_{t_n}-{x}_{t_n}\right){}^2\\ {}+{c}_{n+1}^0{\left({D}_{t_n}+{\kappa}_0{x}_{t_n}\right)}^2{e}^{-2{\rho}_0\tau}+{d}_{n+1}^0{v}_0{F}_{t_n}^2+{g}_{n+1}^0\left({X}_{t_n}-{x}_{t_n}\right)\left({D}_{t_n}+{\kappa}_0{x}_{t_n}\right){e}^{-{\rho}_0\tau}\\ {}+{h}_{n+1}^0\left({X}_{t_n}-{x}_{t_n}\right){a}_0{F}_{t_n}+{l}_{n+1}^0\left({D}_{t_n}+{\kappa}_0{x}_{t_n}\right){e}^{-{\rho}_0\tau}{a}_0{F}_{t_n}\Big\}.\end{array} $$
(30)

To obtain the minimum we differentiate Eq. 30 with respect to \( {x}_{t_n} \)

$$ \begin{array}{l}\frac{\partial J}{\partial {x}_{t_n}}=\left({F}_{t_n}+\frac{s}{2}\right)+{\uplambda}_0\left({X}_0-{X}_{t_n}\right)+{D}_{t_n}+\frac{x_{t_n}}{q_0}\\ {}-\left({a}_0^{m- n}\times \overline{a}{F}_n+\frac{s}{2}\right)-{\uplambda}_0{X}_0-2{b}_{n+1}^0\left({X}_{t_n}-{x}_{t_n}\right)\\ {}+2{\kappa}_0{c}_{n+1}^0\left({D}_{t_n}+{\kappa}_0{x}_{t_n}\right){e}^{-2{\rho}_0\tau}+{g}_{n+1}^0{e}^{-{\rho}_0\tau}\left[{\kappa}_0\left({X}_{t_n}-{x}_{t_n}\right)-\right({D}_{t_n}+{\kappa}_0{x}_{t_n}\left)\right]\\ {}-{h}_{n+1}^0{a}_0{F}_{t_n}+{l}_{n+1}^0{\kappa}_0{e}^{-{\rho}_0\tau}{a}_0{F}_{t_n}\ \\ {}\kern1.2em =\kern0.24em {x}_{t_n}\left(\frac{1}{q_0}+2{b}_{n+1}^0-2{g}_{n+1}^0{\kappa}_0{e}^{-{\rho}_0\tau}+{c}_{n+1}^02{\kappa}_0^2{e}^{-2{\rho}_0\tau}\right)\\ {}+{X}_{t_n}\left(-{\uplambda}_0-2{b}_{n+1}^0+{g}_{n+1}^0{e}^{-{\rho}_0\tau}{\kappa}_0\right)+{D}_{t_n}\left(1+{c}_{n+1}^02{\kappa}_0{e}^{-2{\rho}_0\tau}-{g}_{n+1}^0{e}^{-{\rho}_0\tau}\right)\\ {}+{F}_{t_n}\left(1-{a}_0^{m- n}\times \overline{a}-{h}_{n+1}^0{a}_0+{l}_{n+1}^0{\kappa}_0{e}^{-{\rho}_0\tau}{a}_0\right).\end{array} $$
(31)

Setting \( \frac{\partial J}{\partial {x}_{t_n}}\overset{!}{=}0 \) for Eq. 31 to obtain the optimal choice

$$ {x}_{t_n}= o{D}_{t_n}+ w{X}_{t_n}+ u{F}_{t_n}, $$
(32)

Where

$$ \begin{array}{l}\kern0.48em o\kern0.48em =-\frac{1}{2}{\delta}_{n+1}^0\left(1+{c}_{n+1}^02{\kappa}_0{e}^{-2{\rho}_0\tau}-{g}_{n+1}^0{e}^{-{\rho}_0\tau}\right),\\ {}\kern0.48em w\kern0.36em =-\frac{1}{2}{\delta}_{n+1}^0\left(-{\uplambda}_0-2{b}_{n+1}^0+{g}_{n+1}^0{e}^{-{\rho}_0\tau}{\kappa}_0\right),\\ {}\kern0.48em u\kern0.48em =-\frac{1}{2}{\delta}_{n+1}^0\left(1-{a}_0^{m- n}\times \overline{a}-{h}_{n+1}^0{a}_0+{l}_{n+1}^0{\kappa}_0{e}^{-{\rho}_0\tau}{a}_0\right),\\ {}{\delta}_{n+1}^0\kern0.36em =\kern0.36em {\left(\frac{1}{2{q}_0}+{b}_{n+1}^0-{g}_{n+1}^0{\kappa}_0{e}^{-{\rho}_0\tau}+{c}_{n+1}^0{\kappa}_0^2{e}^{-2{\rho}_0\tau}\right)}^{-1}.\end{array} $$

Putting Eq. 32 into Eq. 30 we obtain the optimal value function given by Eq. 9 and the coefficients given by Eqs. 1117. This concludes the induction.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kruse, T., Sun, E.W. (2014). News Trader, Liquidity and Transaction Cost. In: Dufrénot, G., Jawadi, F., Louhichi, W. (eds) Market Microstructure and Nonlinear Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-05212-0_4

Download citation

Publish with us

Policies and ethics