Skip to main content

Ice Prevention Systems (IPS)

  • Chapter
  • First Online:
Wind Turbines in Cold Climates

Part of the book series: Green Energy and Technology ((GREEN))

  • 1546 Accesses

Abstract

The chapter after proposing a procedure of ice prevention system assessments, compares the different IPS concepts that are presented and systematically compared. The advantages and disadvantages of current wind turbine IPS are then discussed. Emerging technologies are reviewed. They are the pneumatic de-icing system (already in use in aerodynamic field), microwave, low adhesion coating materials, the intermittent (cyclic) hot gas heating, the regenerative ice prevention system and finally the regenerative heating. Some simple calculations have been made to set up a comparison of the capabilities of such systems. From this discussion, a proposal of the energetic efficiency of an IPS is presented together with a synthetic model for estimating the anti-icing power and energy requirement. A worked example explains practically the theory. The chapters include the detailed calculation of the design of a hot air thermal anti-icing ice prevention system, developed on the basis of the knowledge developed from the previous chapters. It describes how the blade can be geometrically discretised, the thermo-aerodynamic model and the conjugate heat transfer model. Results are given and the simplification discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Khalil KM, Miller DR, Wright WB (2001) Validation of NASA thermal ice protection computer codes: part 3-the validation of antice. NASA Langley Research Center, NASA/TM-2001-210907

    Google Scholar 

  2. Makkonen L, Laakso T, Marjaniemi M, Finstad KJ (2001) Modeling and prevention of ice accretion on wind turbines. Wind Eng 25(1):3–21

    Article  Google Scholar 

  3. Beaugendre H, Morency F, Habashi WG (2003) FENSAP-ICE’s three-dimensional in-flight ice accretion module. J Aircr 40(2):239–247

    Article  Google Scholar 

  4. Battisti L, Fedrizzi R, Rialti M, Dal Savio S (2005) A model for the design of hot-air based wind turbine ice prevention system. In: Conference WREC05, Aberdeen, Germany, 22–27 May 2005

    Google Scholar 

  5. Ronsten G (2004) Svenska erfarenheter av vindkraft i kallt klimat nedisning. Vindkast Ochavisning, Elforsk rapport 04:13–40

    Google Scholar 

  6. Peltola E, Marjaniemi M, Stiesdal H (1999) An ice prevention system for the wind turbine blades. In: Proceedings of European wind energy conference, Nice, France, 1–5 March 1999

    Google Scholar 

  7. Seifert H (2003) Technical requirements for rotor blades operating in cold climate. In: Proceedings of Boreas VI, DEWI Deutsches Windenergie-Institut GmbH, p 5

    Google Scholar 

  8. Mansson J (2004) Why de-icing of wind turbine blades? In: Proceedings of global windpower, Chicago, 18-21 March 2004

    Google Scholar 

  9. Pederson E (2008) Wind turbine ice protection system (WTIPS). Kelly aerospace thermal systems. Winterwind. Norrkping, 9–10 December 2008

    Google Scholar 

  10. Woigt H (1949) Deutsche Patentschrift n.842330

    Google Scholar 

  11. Enercon International GmbH (2003) Enercon E-66 20.70 Technical Description

    Google Scholar 

  12. Battisti L (2006) Ice prevention systems selection and design.DTU special course, Master of Science in Wind Energy, June 2006

    Google Scholar 

  13. Battisti L, Dal Savio S (2003) Sistema antighiaccio per pale di turbine eoliche parte 1: valutazione del fabbisogno energetico. In: 58th congresso ATI, Padova, Italy, 8–12 September 2003

    Google Scholar 

  14. Battisti L, Soraperra G (2003) Sistema antighiaccio per pale di turbine eoliche parte 2: sistemi a circolazione di aria. In: 58th congresso ATI. Padova, Italy, pp 8–12 September 2003

    Google Scholar 

  15. Thomas SK, Cassoni RP, MacArthur CD (1996) Aircraft anti-icing and deicing techniques and modeling. J Aircr 33(5):841–853

    Article  Google Scholar 

  16. Albers A (2011) Summary of a technical validation of ENERCON’s rotor blade de-Icing system. Deutsche wind guard consulting Gmbh, PP11035-V2

    Google Scholar 

  17. Enercon International GmbH (2010), ENERCON ice detection system power curve method. Technical description, D0154426-2

    Google Scholar 

  18. Krenn A, Winkelmeier H, Wlfler T, Tiefenbacher K (2011) Technical assessment of rotor blade heating system in the Austrian Alps. In: Winterwind 2011 conference. Umeå, Sweden, 9–10 February 2011

    Google Scholar 

  19. Jonsson C (2012) Further development of ENERCON’s de-icing system. In: Winterwind 2012 Conference, Skelleftea, 7–8 February 2012

    Google Scholar 

  20. Kays WM, Crawford ME (1980) Convective heat transfer and mass transfer. McGraw-Hill, New York

    Google Scholar 

  21. Ruff GA, Berkowitz BM (1990) Users manual for the NASA Lewis ice accretion prediction code (Lewice), NASA Langley Research Center, Technical report, NASA CR 185129

    Google Scholar 

  22. Incropera F, DeWitt D (1996) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York

    Google Scholar 

  23. Halpin JC (1992) Primer on composite materials analysis, 2 Revised edn. Technomic publication, Lancaster

    Google Scholar 

  24. Øye S (1988) Project K 30 m Glasfibervinge Teknik Beskrivelse. Afdelingen for Fluid Mekanik Den Politekniske Lreanstalt, Lyngby, Denmark

    Google Scholar 

  25. Botura G, Fisher K (2003) Development of ice protection system for wind turbine applications. In: Proceedings of the VI BOREAS conference, Pyhatunturi, Finland, 9–11 April 2003

    Google Scholar 

  26. Mayer C (2007) Systme lectrothermique de Dgivrage pour une Pale d’Eolienne, UQAR, Rimouski, Canada

    Google Scholar 

  27. Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13:428–438

    Article  Google Scholar 

  28. Andersen E, Börjesson E, Vainionp P, Undem LS (2011) Wind power in cold climate. WSP Environmental 2011

    Google Scholar 

  29. Battisti L, Baggio P, Fedrizzi R (2006) Warm-air intermittent de-icing system for wind turbines. Wind Eng 30(5):361–374

    Article  Google Scholar 

  30. Battisti L, Fedrizzi R (2007) 2D numerical simulation of a wind turbine de-icing system using cycled heating. Wind Eng 31(1):33–42

    Article  Google Scholar 

  31. Yasilik AD, De Witt KJ, Keith TG (1992) Three-dimensional simulation of electrothermal deicing systems. J Aircr 29(6):1035–1042

    Article  Google Scholar 

  32. Gray VH, Bowden DT, von Glahn U (1952) Preliminary results of cyclical de-icing of a gas-heated airfoil. NASA Langley Research Center, Technical report, NACA-RM-E51J29

    Google Scholar 

  33. Mingione G, Brandi V (1998) Ice accretion prediction on multielement airfoils. J Aircr 35(2):240–246

    Article  Google Scholar 

  34. Özisik MN (1994) Finite difference methods in heat transfer. CRC Press, Boca Raton

    MATH  Google Scholar 

  35. Battisti L, Fedrizzi R, Dal Savio S, Giovannelli A (2005) Influence of the and size of wind turbines on anti-icing thermal power requirement. In: Proceedings of EUROMECH 2005 wind energy colloquium, Oldenburg, Germany, 4–7 October 2005

    Google Scholar 

  36. Battisti L (2002) Anti-icing system for wind turbines. Patents US7637715B2, EP1552143B1 et al., priority 2002

    Google Scholar 

  37. Battisti L (2006) Method for implementing wind energy converting systems, Patents US8398368 et al., priority 2006

    Google Scholar 

  38. Weighardt K (1946) Hot air discharge for de-icing. Air material command—AAF Trans, technical publication, F-TS-919 RE

    Google Scholar 

  39. Rohsenow WM, Hartnett JP, Ganic EN (1985) Mass transfer cooling. Handbook of heat transfer applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Battisti .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Battisti, L. (2015). Ice Prevention Systems (IPS). In: Wind Turbines in Cold Climates. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05191-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05191-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05190-1

  • Online ISBN: 978-3-319-05191-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics