Skip to main content

Effects of Cold Climates on Wind Turbine Design and Operation

  • Chapter
  • First Online:
Wind Turbines in Cold Climates

Part of the book series: Green Energy and Technology ((GREEN))

  • 1559 Accesses

Abstract

This chapter, after introducing the characteristics of cold climates, reviews the special equipment needed to safely exploit wind energy power systems in these locations and gives an updated picture of the current installations in the world. Then the analysis points at the effects of site elevation on inland plants. For these installations some aspects are often neglected or even ignored either in turbine design or in wind park development. Deviation from the standard density has a series of consequences both on power curve and loads, and if counteracting means are not adopted, the turbines suffer from poor performance and ruptures. Overview of offshore icing is also given. A brief introduction to issues concerning operations in icing conditions is given, in particular, the strategies and the special equipment are indicated, together with real indications of the penalties in annual energy harvest of existing wind parks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germanischer Lloyd Industrial Services GmbH (2005) Business segment wind energy, guideline for the certification of offshore wind turbines

    Google Scholar 

  2. Laakso T, Holttinen H, Ronsten G, Horbaty R, Lacroix A, Peltola E, Tammelin B (2010) State-of-the-art of wind energy in cold climates. http://www.vtt.fi/publications/index.jsp

  3. Makkonen L (2000) Models for the growth of rime, glaze, icicles and wet snow on structures. Philos Trans R Soc Lond 358(1776):2913–2939

    Article  Google Scholar 

  4. International Standard ISO 12494:2001. Atmospheric icing on structures. ISO/TC 98/SC3

    Google Scholar 

  5. The wind power: wind turbines and wind farms database (2013) http://www.thewindpower.net, last upload: May 2013

  6. Peltola E et al (2012) State-of-the-art of wind energy in cold climates. http://www.vtt.fi/publications/index.jsp

  7. BTM wind report (2012) World market update 2012, Navigant Research. http://www.navigantresearch.com/research/world-market-update-2012

  8. Dobesch H, Kury G (2006) Basic meteorological concepts and recommendations for the exploitation of wind energy in the atmospheric boundary layer. Zentralanstalt fur Meteorologie und Geodynamik. Vienna

    Google Scholar 

  9. Durstewitz M (2005) A statistical evaluation of icing failures in Germany - 2050 MW wind-programme. Institut fr Solare Energieversorgungstechnik e.V. (ISET). http://renknownet2.iwes.fraunhofer.de

  10. Botta G, Cavaliere M, Casale C (2006) Exploitation of wind energy: ENEL’s first experience at a mountain test site. In: Proceedings of the EUROSUN conference. Glasgow

    Google Scholar 

  11. International Electrotechnical Commission (2005) International standard IEC 61400-1. Wind turbine generator systems - part 1: safety requirements, 3rd edn

    Google Scholar 

  12. International Electrotechnical Commission (2001) International standard IEC 61400-13. Wind turbine generator systems - part 13: measurement of mechanical loads, 1st edn

    Google Scholar 

  13. Germanischer Lloyd Industrial Services GmbH. Business Segment Wind Energy (2010) Guideline for the certification of wind turbines

    Google Scholar 

  14. Spiegel MR (1975) Probability and statistics. Schaum’s outline series in mathematics. McGraw-Hill

    Google Scholar 

  15. Mounturb (1996) Load and power measurement program on wind turbines operating in complex mountainous regions, vol I–III. CRES, Pikermi

    Google Scholar 

  16. Winterstein SR, Kashef T (1999) Moment based load and response model with wind engineering applications. Wind energy symposium AIAA/ASME, p 346

    Google Scholar 

  17. European commission non nuclear energy Joule-III RD (1998) European Wind Turbine Standard - II, ECN Solar & Wind Energy Publishing

    Google Scholar 

  18. Battisti L (2012) Gli impianti motori eolici. Lorenzo Battisti (ed) ISBN: 978-88-907585-0-8

    Google Scholar 

  19. Buhl M (2012) NWTC design codes \({\rm WT}\_{\rm Perf}\) a wind-turbine performance predictor. National renewable energy laboratory, official web site: http://wind.nrel.gov/designcodes/simulators/wtperf/. Accessed 6 Nov 2012

  20. International electrotechnical commission (2005) International standard IEC 61400-12-1. Wind turbines - Part 12–1: power performance measurements of electricity producing wind turbines, 1st edn

    Google Scholar 

  21. Tammelin B, Seifert H (2000) The EU WECO-project wind energy production in cold climate. In: Proceedings of an international conference BOREAS V. Finnish Meteorological Institute, Levi

    Google Scholar 

  22. Jonsson C (2012) Further development of ENERCONs de-icing system. Winter wind. Skelleftea

    Google Scholar 

  23. Makkonen L (1984) Atmospheric icing on sea structures. Army Cold Regions Research & Engineering Laboratory, CRREL Monograph, 84–2. US

    Google Scholar 

  24. Mróz A, Holnicki-Szulc J, Karna T (2005) Mitigation of ice loading on off-shore wind turbines, feasibility study of a semi-active solution. II ECCOMAS thematic conference on smart structures and materials. Lisbon, 18–21 July 2005

    Google Scholar 

  25. Eranti E, Lehtonen E, Pukkila H, Rantala L (2011) A novel offshore windmill foundation for heavy ice conditions. In: Proceedings of the 30th international conference on ocean, offshore and arctic engineering OMAE 2011 Rotterdam, The Netherlands 19–24 June 2011

    Google Scholar 

  26. Battisti L, Fedrizzi R, Brighenti A, Laakso T (2006) Sea ice and icing risk for offshore wind turbines. In: Proceedings of the OWEMES 2006. Civitavecchia, Italy 20–22 April 2006

    Google Scholar 

  27. Battisti L, Hansen MOL, Soraperra G (2005) Aeroelastic simulations of an iced MW-class wind turbine rotor. In: Proceedings of the VII BOREAS conference. Saarisalkä, Finland 7–8 March 2005

    Google Scholar 

  28. Morcillo M (2004) Atmospheric corrosion of reference metals in Antarctic sites. Cold Reg Sci Technol 40:165–178

    Article  Google Scholar 

  29. Tammelin B, Cavaliere M, Holtinnen H, Morgan C, Seifert H (2000) Wind energy in cold climate - final report WECO (JOR3-CT95-0014), Finnish Meteorological Institute, Helsinki. ISBN: 951-679-518-6

    Google Scholar 

  30. EWEA (2004) Wind force 12. http://www.ewea.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Battisti .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Battisti, L. (2015). Effects of Cold Climates on Wind Turbine Design and Operation. In: Wind Turbines in Cold Climates. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05191-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05191-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05190-1

  • Online ISBN: 978-3-319-05191-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics