Skip to main content

TRPs in Olfaction

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 223))

Abstract

The mammalian olfactory system has become an excellent model system to understand the function of transient receptor potential (TRP) channels within their native cellular and circuit environment. The discovery that the canonical TRP channel TRPC2 is highly expressed in sensory neurons of the vomeronasal organ (VNO) has led to major advances in our understanding of the cellular and molecular processes underlying signal transduction of pheromones and other molecular cues that play an essential role in the control of instinctive decisions and innate social behaviors. TRPC2 knockout mice provide a striking example that the loss of function of a single gene can cause severe alterations in a variety of social interactions including the display of aggression, social dominance, and sexual behaviors. There is mounting evidence that TRPC2 is not the only TRP channel expressed in cells of the olfactory system but that other TRP channel subtypes such as TRPC1, TRPC4, TRPC6, TRPM4, and TRPM5 could also play important functional roles in mammalian olfaction. Here, I review such findings and discuss future areas for investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brann JH, Dennis JC, Morrison EE, Fadool DA (2002) Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2. J Neurochem 83:1452–1460. doi:10.1186/1471-2202-11-61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brechbuhl J, Moine F, Klaey M et al (2013) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 110:4762–4767. doi:10.1073/pnas.1214249110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315. doi:10.1038/nature05404

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Marton TF, Logan DW et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  • Chamero P, Katsoulidou V, Hendrix P et al (2011) G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci U S A 108:12898–12903. doi:10.1073/pnas.1107770108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamero P, Leinders-Zufall T, Zufall F (2012) From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 35:597–606. doi:10.1016/j.tins.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Cheung JY, Barber DL et al (2002) Erythropoietin modulates calcium influx through TRPC2. J Biol Chem 277:34375–34382

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Tong Q, Cheung JY et al (2004) Interaction of TRPC2 and TRPC6 in erythropoietin modulation of calcium influx. J Biol Chem 279:10514–10522. doi:10.1074/jbc.M308478200

    Article  CAS  PubMed  Google Scholar 

  • Chu X, Tong Q, Wozney J et al (2005) Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx. Cell Calcium 37:173–182

    Article  CAS  PubMed  Google Scholar 

  • Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC (2006) Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18:R880–889. doi:10.1016/j.cub.2008.07.063

    Article  CAS  PubMed  Google Scholar 

  • Davies R, Hayat S, Wigley CB, Robbins J (2004) The calcium influx pathway in rat olfactory ensheathing cells shows TRPC channel pharmacology. Brain Res 1023:154–156. doi:10.1016/j.brainres.2004.07.032

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Hayar A, Callaway J, Yang XH, Nai Q, Ennis M (2009) Group I mGluR activation enhances Ca2+-dependent nonselective cation currents and rhythmic bursting in main olfactory bulb external tufted cells. J Neurosci 29:11943–11953. doi:10.1523/JNEUROSCI.0206-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Dong HW, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M (2012) Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett 524:49–54. doi:10.1016/j.neulet.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N, Quick K, Wood JN (2013) Transient receptor potential channels and mechanosensation. Annu Rev Neurosci 36:519–546. doi:10.1146/annurev-neuro-062012-170412

    Article  CAS  PubMed  Google Scholar 

  • Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signalling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 21:2692–2700

    Article  PubMed  Google Scholar 

  • Ferrero DM, Moeller LM, Osakada T et al (2013) A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature 502:368–371. doi:10.1038/nature12579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestein SJ (2009) Symposium overview: Noncanonical transduction pathways in olfaction: new views on olfactory signaling. Ann NY Acad Sci 1170:161–163. doi:10.1111/j.1749-6632.2009.04882.x

    Article  PubMed  Google Scholar 

  • Frankenberg S, Schneider NY, Fletcher TP, Shaw G, Renfree MB (2011) Identification of two distinct genes at the vertebrate TRPC2 locus and their characterisation in a marsupial and a monotreme. BMC Mol Biol 12:39. doi:10.1186/1471-2199-12-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haga S, Hattori T, Sato T et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Finger TE (2008) Is TRPM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci 9:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasen NS, Gammie SC (2011) Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli. Behav Brain Res 217:347–353

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Thomas A, Afshar F, Sonigra R, Wigley CB (2003) Manipulation of olfactory ensheathing cell signaling mechanisms: effects on their support for neurite regrowth from adult CNS neurons in coculture. Glia 44:232–241. doi:10.1002/glia.10299

    Article  PubMed  Google Scholar 

  • Hirschler-Laszkiewicz I, Zhang W, Keefer K et al (2012) Trpc2 depletion protects red blood cells from oxidative stress-induced hemolysis. Exp Hematol 40:71–83. doi:10.1016/j.exphem.2011.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466. doi:10.1073/pnas.102596199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Hirota J, Mombaerts P (2003) Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr Biol 13:394–400

    Article  CAS  PubMed  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502. doi:10.1038.3507.5.0

    Article  CAS  PubMed  Google Scholar 

  • Kelliher KR, Spehr M, Li XH, Zufall F, Leinders-Zufall T (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390. doi:10.1111/j.1460-9568.2006.04866.x

    Article  PubMed  Google Scholar 

  • Kim S, Ma L, Yu CR (2011) Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat Commun 2:365. doi:10.1038/ncomms1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ma L, Jensen KL, Kim MM, Bond CT, Adelman JP, Yu CR (2012) Paradoxical contribution of SK3 and GIRK channels to the activation of mouse vomeronasal organ. Nat Neurosci 15:1236–1244. doi:10.1038/nn.3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, van Rossum DB, Patterson RL (2010) TRPC channels in pheromone sensing. Vitam Horm 83:197–213. doi:10.1016/S0083-6729(10)83008-0

    Article  CAS  PubMed  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  • Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381. doi:10.1073/pnas.082127599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    Article  CAS  PubMed  Google Scholar 

  • Liberles SD, Horowitz LF, Kuang D et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci U S A 106:9842–9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liman ER, Dulac C (2007) TRPC2 and the molecular biology of pheromone detection in mammals. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Liman ER, Innan H (2003) Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100:3328–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liman ER, Zufall F (2004) Transduction channels in the vomeronasal organ. In: Frings S, Bradley J (eds) Transduction channels in sensory cells. Wiley-VHC, Weinheim, Germany, pp 135–152

    Google Scholar 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96:5791–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 104:2471–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Aungst JL, Puche AC, Shipley MT (2012) Serotonin modulates the population activity profile of olfactory bulb external tufted cells. J Neurophysiol 107:473–483. doi:10.1152/jn.00741.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loconto J, Papes F, Chang E et al (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618

    Article  CAS  PubMed  Google Scholar 

  • Lof C, Sukumaran P, Viitanen T et al (2012) Communication between the calcium and cAMP pathways regulate the expression of the TSH receptor: TRPC2 in the center of action. Mol Endocrinol 26:2046–2057. doi:10.1210/me.2012-1171

    Article  CAS  PubMed  Google Scholar 

  • Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    Article  CAS  PubMed  Google Scholar 

  • Mamasuew K, Breer H, Fleischer J (2008) Grueneberg ganglion neurons respond to cool ambient temperatures. Eur J Neurosci 28:1775–1785. doi:10.1111/j.1460-9568.2008.06465.x

    Article  PubMed  Google Scholar 

  • Mast TG, Brann JH, Fadool DA (2010) The TRPC2 channel forms protein-protein interactions with Homer and RTP in the rat vomeronasal organ. BMC Neurosci 11:61. doi:10.1186/1471-2202-11-61

    Article  PubMed  PubMed Central  Google Scholar 

  • Meis S, Munsch T, Sosulina L, Pape HC (2007) Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to cholecystokinin are mediated by a transient receptor potential-like current. Mol Cell Neurosci 35:356–367

    Article  CAS  PubMed  Google Scholar 

  • Menco BP, Carr VM, Ezeh PI, Liman ER, Yankova MP (2001) Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. J Comp Neurol 438:468–489

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (2008) TRPC2: expression outside the mouse VNO. Int Symp Olfaction Taste (ISOT) XV abstr 125:39

    Google Scholar 

  • Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch 461:499–506. doi:10.1007/s00424-010-0920-3

    Article  CAS  PubMed  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140. doi:10.1146/annurev.physiol.70.113006.100608

    Article  CAS  PubMed  Google Scholar 

  • Oshimoto A, Wakabayashi Y, Garske A et al (2013) Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons. PLoS One 8:e61990. doi:10.1371/journal.pone.0061990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacifico R, Dewan A, Cawley D, Guo C, Bozza T (2012) An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep 2:76–88. doi:10.1016/j.celrep.2012.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister S, Dietrich MG, Sidler C, Fritschy JM, Knuesel I, Elsaesser R (2012) Characterization and turnover of CD73/IP3R3-positive microvillar cells in the adult mouse olfactory epithelium. Chem Senses 37:859–868. doi:10.1093/chemse/bjs069

    Article  CAS  PubMed  Google Scholar 

  • Pressler RT, Strowbridge BW (2006) Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49:889–904

    Article  CAS  PubMed  Google Scholar 

  • Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27:10969–10981

    Article  CAS  PubMed  Google Scholar 

  • Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  CAS  PubMed  Google Scholar 

  • Schmid A, Pyrski M, Biel M, Leinders-Zufall T, Zufall F (2010) Grueneberg ganglion neurons are finely tuned cold sensors. J Neurosci 30:7563–7568. doi:10.1523/JNEUROSCI.0608-10.2010

    Article  CAS  PubMed  Google Scholar 

  • Shepherd GM, Chen WR, Greer CA (2004) Olfactory Bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, New York, NY, pp 165–216

    Chapter  Google Scholar 

  • Shpak G, Zylbertal A, Yarom Y, Wagner S (2012) Calcium-activated sustained firing responses distinguish accessory from main olfactory bulb mitral cells. J Neurosci 32:6251–6262. doi:10.1523/JNEUROSCI.4397-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Spehr J, Hagendorf S, Weiss J, Spehr M, Leinders-Zufall T, Zufall F (2009) Ca2+-calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J Neurosci 29:2125–2135

    Article  CAS  PubMed  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S et al (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    Article  CAS  PubMed  Google Scholar 

  • Stavermann M, Buddrus K, St John JA, Ekberg JA, Nilius B, Deitmer JW, Lohr C (2012) Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium 52:113–123

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Stroh O, Freichel M, Kretz O, Birnbaumer L, Hartmann J, Egger V (2012) NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J Neurosci 32:5737–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran P, Lof C, Kemppainen K et al (2012) Canonical transient receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: importance of protein kinase C delta (PKCdelta) and stromal interaction molecule 2 (STIM2). J Biol Chem 287:44345–44360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran P, Lof C, Pulli I, Kemppainen K, Viitanen T, Tornquist K (2013) Significance of the transient receptor potential canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol Cell Endocrinol 374:10–21. doi:10.1016/j.mce.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  • Sutton KA, Jungnickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274:426–435

    Article  CAS  PubMed  Google Scholar 

  • Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956

    Article  CAS  PubMed  Google Scholar 

  • Tong Q, Chu X, Cheung JY et al (2004) Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase Cgamma and IP3R. Am J Physiol Cell Physiol 287:C1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Turner KL, Sontheimer H (2013) KCa3.1 modulates neuroblast migration along the rostral migratory stream (RMS) in vivo. Cereb Cortex. Advance Access published May 15, 2013. doi:10.1093/cercor/bht090

  • Vannier B, Peyton M, Boulay G et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. Proc Natl Acad Sci U S A 96:2060–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viitanen TM, Sukumaran P, Lof C, Tornquist K (2013) Functional coupling of TRPC2 cation channels and the calcium-activated anion channels in rat thyroid cells: implications for iodide homeostasis. J Cell Physiol 228:814–823. doi:10.1002/jcp.24230

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen Und Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206. doi:10.1007/s00441-005-0004-4

    Article  CAS  Google Scholar 

  • Wachowiak M, Shipley MT (2006) Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 17:411–423

    Article  PubMed  Google Scholar 

  • Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitman MC, Greer CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89:162–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Wissenbach U, Schroth G, Philipp S, Flockerzi V (1998) Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 429:61–66

    Article  CAS  PubMed  Google Scholar 

  • Worley PF, Zeng W, Huang GN et al (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim E, Birnbaumer L (2007) TRPC2: molecular biology and functional importance. In: Nilius B, Flockerzi V (eds) Handbook of Experimental Pharmacology. Springer, Berlin, pp 53–75. doi:10.1007/978-3-540-34891-7_3

    Google Scholar 

  • Yildirim E, Dietrich A, Birnbaumer L (2003) The mouse C-type transient receptor potential 2 (TRPC2) channel: alternative splicing and calmodulin binding to its N terminus. Proc Natl Acad Sci U S A 100:2220–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechel S, Werner S, von Bohlen Und Halbach O (2007) Distribution of TRPC4 in developing and adult murine brain. Cell Tissue Res 328:651–656. doi:10.1007/s00441-007-0388-4

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yang C, Delay RJ (2010) Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am J Physiol Cell Physiol 298:C1253–1264. doi:10.1152/ajpcell.00271.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85:661–671

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Munger SD (2010) Receptor guanylyl cyclases in mammalian olfactory function. Mol Cell Biochem 334:191–197. doi:10.1007/s11010-009-0325-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T (2005) Neurobiology of TRPC2: from gene to behavior. Pflugers Arch 451:61–71. doi:10.1007/s00424-005-1432-4

    Article  CAS  PubMed  Google Scholar 

  • Zufall F, Leinders-Zufall T, Puche A (2008) Accessory olfactory system. In: Squire LR (ed) The senses: a comprehensive reference. Academic, Oxford, pp 783–814

    Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by Deutsche Forschungsgemeinschaft grants Sonderforschungsbereich 894, Schwerpunktprogramm 1392, and Graduiertenkolleg 1362 and by the National Institutes of Health (DC005633).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zufall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zufall, F. (2014). TRPs in Olfaction. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_8

Download citation

Publish with us

Policies and ethics