Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 223))

Abstract

Hearing is a particularly sensitive form of mechanosensation that relies on dedicated ion channels transducing sound-induced vibrations that hardly exceed Brownian motion. Attempts to molecularly identify these auditory transduction channels have put the focus on TRPs in ears. In Drosophila, hearing has been shown to involve TRPA, TRPC, TRPN, and TRPV subfamily members, with candidate auditory transduction channels including NOMPC (=TRPN1) and the TRPVs Nan and Iav. In vertebrates, TRPs are unlikely to form auditory transduction channels, yet most TRPs are expressed in inner ear tissues, and mutations in TRPN1, TRPVA1, TRPML3, TRPV4, and TRPC3/TRPC6 have been implicated in inner ear function. Starting with a brief introduction of fly and vertebrate auditory anatomies and transduction mechanisms, this review summarizes our current understanding of the auditory roles of TRPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB (2009) Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med 169:938–944

    PubMed  Google Scholar 

  • Akoipan AN, Ruparel NB, Jeske NA, Hargraeves KM (2007) Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol 583:175–193

    Google Scholar 

  • Albert JT, Nadrowski B, Göpfert MC (2007) Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 17:1000–1006

    CAS  PubMed  Google Scholar 

  • Amato V, Viña E, Calavia MG, Guerrera MC, Laurà R, Navarro M, De Carlos F, Cobo J, Germanà A, Vega JA (2012) TRPV4 in the sensory organs of adult zebrafish. Microsc Res Tech 75:89–96

    CAS  PubMed  Google Scholar 

  • Asai Y, Holt JR, Géléoc GS (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11:27–37

    PubMed  PubMed Central  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  • Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12:553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beurg M, Tan X, Fettiplace R (2013) A prestin motor in chicken auditory hair cells: active force generation in a nonmammalian species. Neuron 79(1):69–81

    CAS  PubMed  Google Scholar 

  • Cable J, Steel KP (1998) Combined cochleo-saccular and neuroepithelial abnormalities in the Varitint-waddler-J (Va J) mouse. Hear Res 123:125–136

    CAS  PubMed  Google Scholar 

  • Castiglioni AJ, Remis NN, Flores EN, García-Añoveros J (2011) Expression and vesicular localization of mouse Trpml3 in stria vascularis, hair cells, and vomeronasal and olfactory receptor neurons. J Comp Neurol 519:1095–1114

    CAS  PubMed  Google Scholar 

  • Cheng LE, Song W, Looger LL, Jan LY, Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67:373–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677

    CAS  PubMed  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH, Duggan A, Geleoc GS, Gray PA, Hoffman MP, Rehm HL, Tamasauskas D, Zhang DS (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    CAS  PubMed  Google Scholar 

  • Corey DP (2006) What is the hair cell transduction channel? J Physiol 576:23–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol (London) 434:369–398

    CAS  Google Scholar 

  • Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint–waddler (Va) mice. Proc Natl Acad Sci U S A 99:14994–14999

    PubMed  PubMed Central  Google Scholar 

  • Deol MS (1954) The anomalies of the labyrinth of the mutants varitint-waddler, shaker-2 and jerker in the mouse. J Genet 52:562–588

    Google Scholar 

  • Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988

    CAS  PubMed  Google Scholar 

  • Effertz T, Wiek R, Göpfert MC (2011) NompC TRP channel is essential for Drosophila sound receptor function. Curr Biol 21:592–597

    CAS  PubMed  Google Scholar 

  • Effertz T, Nadrowski B, Piepenbrock D, Albert JT, Göpfert MC (2012) Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nat Neurosci 15:1198–2000

    CAS  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    CAS  PubMed  Google Scholar 

  • Farris HE, Leblanc CL, Goswami J, Ricci AJ (2004) Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol 558:769–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman TB, Griffith AJ (2003) Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4:341–402

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51:663–678

    PubMed  PubMed Central  Google Scholar 

  • Gabashvili IS, Sokolowski BH, Morton CC, Giersch AB (2007) Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 8:305–328

    PubMed  PubMed Central  Google Scholar 

  • Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS (2011) The coding of temperature in the Drosophila brain. Cell 144:614–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geleoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 264:611–621

    CAS  Google Scholar 

  • Gillespie PG, Müller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139:33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    CAS  PubMed  Google Scholar 

  • Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38(1):2057–64

    PubMed  Google Scholar 

  • Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, Lee Y, Lee HW, Chang DJ, Kaang BK, Cho H, Oh U, Hirsh J, Kernan MJ, Kim C (2004) Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066

    CAS  PubMed  Google Scholar 

  • Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci U S A 100:5514–5519

    PubMed  PubMed Central  Google Scholar 

  • Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000

    PubMed  Google Scholar 

  • Greene CC, McMillan PM, Barker SE, Kurnool P, Lomax MI, Burmeister M, Lesperance MM (2001) DFNA25, a novel locus for dominant nonsyndromic hereditary hearing impairment, maps to 12q21-24. Am J Hum Genet 68:254–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm C, Cuajungco MP, Van Aken AFJ, Schnee M, Jörs S, Kros CJ, Ricci AJ, Heller S (2007) A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A 104:19583–19588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118

    CAS  PubMed  Google Scholar 

  • Guo Z, Grimm C, Becker L, Ricci AJ, Heller S (2013) A novel ion channel formed by interaction of TRPML3 with TRPV5. PLoS One 8:e58174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199

    CAS  PubMed  Google Scholar 

  • Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14:R224–R226

    CAS  PubMed  Google Scholar 

  • Hilgert N, Smith RJ, Van Camp G (2009) Forty six genes causing nonsyndromic hearing impairment: which ones should be analysed in DNA diagnostics? Mutat Res 681:189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudspeth AJ (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen T, Niedermeyer HP, Arnold W (2006) Diagnostics of the cochlear amplifier by means of distortion product otoacoustic emissions. ORL J Otorhinolaryngol Relat Spec 68:334–339

    PubMed  Google Scholar 

  • Jörs S, Grimm C, Becker L, Heller S (2010) Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice. PLoS One 5:e14317

    PubMed  PubMed Central  Google Scholar 

  • Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499:317–356

    PubMed  Google Scholar 

  • Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC, Ito K (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458:165–171

    CAS  PubMed  Google Scholar 

  • Kawashima Y, Géléoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang L, Gao J, Schafer WR, Xie Z, Xu XZ (2010) C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67:381–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmierczak P, Müller U (2012) Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 35:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch 454:703–720

    CAS  PubMed  Google Scholar 

  • Kim HJ, Jackson T, Noben-Trauth K (2003a) Genetic analyses of the mouse deafness mutations varitint-waddler (Va) and jerker (Espnje). J Assoc Res Otolaryngol 4:83–90

    PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Muallem S (2007) Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J Biol Chem 282:36138–36142

    CAS  PubMed  Google Scholar 

  • Kim HJ, Li Q, Tjon-Kon-Sang S, So I, Kiselyov K, Soyombo AA, Muallem S (2008) A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J 27:1197–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003b) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    CAS  PubMed  Google Scholar 

  • Kim KX, Fettiplace R (2013) Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141:141–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kindt KS, Finch G, Nicolson T (2012) Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Dev Cell 23:329–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    CAS  PubMed  Google Scholar 

  • Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE (2006) Nanospring behaviour of ankyrin repeats. Nature 440:246–249

    CAS  PubMed  Google Scholar 

  • Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5:e11012

    PubMed  PubMed Central  Google Scholar 

  • Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128

    CAS  PubMed  Google Scholar 

  • Liang X, Madrid J, Saleh HS, Howard J (2011) NOMPC, a member of the TRP channel family, localizes to the tubular body and distal cilium of Drosophila campaniform and chordotonal receptor cells. Cytoskeleton 68:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Madrid J, Gärtner R, Verbavatz JM, Schiklenk C, Wilsch-Bräuninger M, Bogdanova A, Stenger F, Voigt A, Howard J (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763

    CAS  PubMed  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom M, Beli AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC) a candidate vertebrate osmoreceptor. Cell 105:525–535

    Google Scholar 

  • Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh MJ (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:294–298

    CAS  PubMed  Google Scholar 

  • Lu Q, Senthilan PR, Effertz T, Nadrowski B, Göpfert MC (2009) Using Drosophila for studying fundamental processes in hearing. Integr Comp Biol 49:674–680

    PubMed  Google Scholar 

  • Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE (1993) Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet 46:486–491

    CAS  PubMed  Google Scholar 

  • Morton CC, Nance W (2006) Newborn hearing screening—a silent revolution. N Engl J Med 354:2151–2164

    CAS  PubMed  Google Scholar 

  • Moser T, Predoehl F, Starr A (2013) Review of hair cell synapse defects in sensorineural hearing impairment. Otol Neurotol 34(6):995–1004

    PubMed  Google Scholar 

  • Nadrowski B, Albert JT, Göpfert MC (2008) Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 18:1365–1372

    CAS  PubMed  Google Scholar 

  • Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects – new findings, new questions. Hear Res 273:7–13

    PubMed  Google Scholar 

  • Nagata K, Zheng L, Madathany T, Castiglioni AJ, Bartles JR, Garcia-Anoveros J (2008) The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc Natl Acad Sci U S A 105:353–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green ED, Wall SM, Marcus DC (2007) Lack of pendrin HCO3- transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6 channels. Am J Physiol Renal Physiol 292:F1314–F1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmori H (1985) Mechanoelectrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petit C, Richardson GP (2009) Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 12:703–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phan PA, Tadros SF, Kim Y, Birnbaumer L, Housley GD (2010) Developmental regulation of TRPC3 ion channel expression in the mouse cochlea. Histochem Cell Biol 133:437–448

    CAS  PubMed  Google Scholar 

  • Prober DA, Zimmerman S, Myers BR, McDermott BM Jr, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schier AF (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28:10102–10110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068

    PubMed  PubMed Central  Google Scholar 

  • Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell MB, Housley GD (2007) TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat. J Physiol 579:101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990

    CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy M, Sivan-Loukianova E, Eberl DF (2013) Cell-type-specific roles of Na+/K + ATPase subunits in Drosophila auditory mechanosensation. Proc Natl Acad Sci U S A 110:181–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance MM, Puel JL (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 83:278–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salas MM, Hargraeves KM, Akopian AN (2009) TRPA1-mediated responses in trigeminal sensory neurons: interaction between TRPA1 and TRPV1. Eur J Neurosci 29:1568–1578

    PubMed  PubMed Central  Google Scholar 

  • Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Möbius W, Howard J, Göpfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150:1042–1054

    CAS  PubMed  Google Scholar 

  • Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S (2005) Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc Natl Acad Sci U S A 102:12572–12577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidi S, Friedrich RW, Nicolson T (2003) NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99

    CAS  PubMed  Google Scholar 

  • Sininger YS (1993) Auditory brain stem response for objective measures of hearing. Ear Hear 14:23–30

    CAS  PubMed  Google Scholar 

  • Sotomayor M, Corey DP, Schulten K (2005) In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13:669–682

    CAS  PubMed  Google Scholar 

  • Stepanyan RS, Indzhykulian AA, Vélez-Ortega AC, Boger ET, Steyger PS, Friedman TB, Frolenkov GI (2011) TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol 12:729–740

    PubMed  PubMed Central  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    CAS  PubMed  Google Scholar 

  • Sun Y, Liu L, Ben-Shahar Y, Jacobs JS, Eberl DF, Welsh MJ (2009) TRPA channels distinguish gravity sensing from hearing in Johnston’s organ. Proc Natl Acad Sci U S A 106:13606–13611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308

    CAS  PubMed  Google Scholar 

  • Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929–934

    PubMed  Google Scholar 

  • van Aken AF, Atiba-Davies M, Marcotti W, Goodyear RJ, Bryant JE, Richardson GP, Noben-Trauth K, Kros CJ (2008) TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. J Physiol 586:5403–5418

    PubMed  PubMed Central  Google Scholar 

  • Van Camp G, Willems PJ, Smith RJ (1997) Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet 60:758–764

    PubMed  PubMed Central  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wangemann P, Nakaya K, Wu T, Maganti RJ, Itza EM, Sanneman JD, Harbidge DG, Billings S, Marcus DC (2007) Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292:F1345–F1353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    CAS  PubMed  Google Scholar 

  • Wong AC, Birnbaumer L, Housley GD (2013) Canonical transient receptor potential channel subtype 3-mediated hair cell Ca(2+) entry regulates sound transduction and auditory neurotransmission. Eur J Neurosci 37:1478–1486

    PubMed  Google Scholar 

  • Xiong W, Grillet N, Elledge HM, Wagner TF, Zhao B, Johnson KR, Kazmierczak P, Müller U (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151:1283–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint waddler mice. Proc Natl Acad Sci U S A 104:18321–18326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, Meltzer S, Jan LY, Jan YN (2013) Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:221–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yorozu S, Wong A, Fischer BJ, Dankert H, Kernan MJ, Kamikouchi A, Ito K, Anderson DJ (2009) Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458:201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanini D, Göpfert MC (2013) Mechanosensation: tethered ion channels. Curr Biol 23:R349–R351

    CAS  PubMed  Google Scholar 

  • Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    CAS  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    CAS  PubMed  Google Scholar 

  • Zimoń M, Baets J, Auer-Grumbach M, Berciano J, Garcia A, Lopez-Laso E, Merlini L, Hilton-Jones D, McEntagart M, Crosby AH, Barisic N, Boltshauser E, Shaw CE, Landouré G, Ludlow CL, Gaudet R, Houlden H, Reilly MM, Fischbeck KH, Sumner CJ, Timmerman V, Jordanova A, Jonghe PD (2010) Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 133:1798–1809

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Göpfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zanini, D., Göpfert, M.C. (2014). TRPs in Hearing. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_7

Download citation

Publish with us

Policies and ethics