Skip to main content

Dendritic Cell-Based Cancer Vaccines

  • Chapter
  • First Online:
Cancer Immunotherapy Meets Oncology

Abstract

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) of our immune system. Their main function is to acquire and process antigen material and migrate to the lymphoid tissues where they present it on their surface in order to control the activation of the specific immunity. In particular the adaptive immune response, mediated by B and T cells, proved important in eradicating a tumour. This boosted the development of DC-based cancer vaccines currently studied worldwide. So far, most clinical trials have vaccinated patients with ex vivo-generated monocyte-derived DCs (moDCs), matured in the presence of cytokines and loaded with tumour antigen via peptides, protein- or RNA-encoding tumour antigens or tumour lysates.

DC-based immunotherapy has proven to be feasible, safe, and able to induce cellular and humoral responses and demonstrated clinical efficacy in a number of patients. The results are even better if the DCs have been appropriately matured. However, only in a subset of patients, these encouraging results can be seen. Although the evidence on clinical responses is still limited, induced responses frequently result in long-term clinical effectiveness. To further improve DC vaccination in cancer patients, a number of variables are already being applied in clinical trials, including DC maturation via Toll-like receptors, and mRNA transfection to load antigen and especially the use of naturally occurring DC subsets instead of moDCs is promising.

The novel immune checkpoint inhibitors, such as the anti-cytotoxic T lymphocyte antigen 4 (CTLA-4), anti-programmed death 1 (PD-1) and anti-programmed death ligand 1 (PD-L1) monoclonal antibodies, expanded the immunotherapeutic repertoire for immunogenic tumours. This has opened the way for combination immunotherapy trials in order to overcome tumour escape mechanisms. As DC vaccines virtually have no side effects, they can be used much earlier in adjuvant settings. The full potential of DC-based cancer vaccines has not yet been fully exploited. Its place in cancer immunotherapy will be determined in the upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    PubMed  CAS  Google Scholar 

  • Akira S, Uematsu S et al (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    PubMed  CAS  Google Scholar 

  • Asea A, Rehli M et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277(17):15028–15034

    PubMed  CAS  Google Scholar 

  • Bachem A, Guttler S et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Balch CM, Soong SJ et al (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19(16):3622–3634

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    PubMed  CAS  Google Scholar 

  • Banchereau J, Palucka AK et al (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61(17):6451–6458

    PubMed  CAS  Google Scholar 

  • Banchereau J, Ueno H et al (2005) Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J Immunother 28(5):505–516

    PubMed  CAS  Google Scholar 

  • Beer TM, Bernstein GT et al (2011) Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin Cancer Res 17(13):4558–4567

    PubMed  CAS  Google Scholar 

  • Berard F, Blanco P et al (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192(11):1535–1544

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143(5):1283–1288

    PubMed  CAS  Google Scholar 

  • Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56(5):739–745

    PubMed  Google Scholar 

  • Bonehill A, Heirman C et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172(11):6649–6657

    PubMed  CAS  Google Scholar 

  • Bonehill A, Tuyaerts S et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16(6):1170–1180

    PubMed  CAS  Google Scholar 

  • Boullart AC, Aarntzen EH et al (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57(11):1589–1597

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brahmer JR, Tykodi SS et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    PubMed Central  PubMed  CAS  Google Scholar 

  • Breckpot K, Corthals J et al (2005) Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J Leukoc Biol 78(4):898–908

    PubMed  CAS  Google Scholar 

  • Brossart P, Wirths S et al (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96(9):3102–3108

    PubMed  CAS  Google Scholar 

  • Butterfield LH, Ribas A et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008

    PubMed  CAS  Google Scholar 

  • Camporeale A, Boni A et al (2003) Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Res 63(13):3688–3694

    PubMed  CAS  Google Scholar 

  • Caruso DA, Orme LM et al (2005) Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer 103(6):1280–1291

    PubMed  CAS  Google Scholar 

  • Cella M, Facchetti F et al (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1(4):305–310

    PubMed  CAS  Google Scholar 

  • Chambers CA, Kuhns MS et al (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    PubMed  CAS  Google Scholar 

  • Colonna M, Trinchieri G et al (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226

    PubMed  CAS  Google Scholar 

  • Crozat K, Guiton R et al (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292

    PubMed Central  PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    PubMed  CAS  Google Scholar 

  • Davis ID, Chen Q et al (2006) Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J Immunother 29(5):499–511

    PubMed  Google Scholar 

  • de Vries IJ, Eggert AA et al (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25(5):429–438

    PubMed  Google Scholar 

  • De Vries IJ, Krooshoop DJ et al (2003a) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63(1):12–17

    PubMed  Google Scholar 

  • de Vries IJ, Lesterhuis WJ et al (2003b) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100

    PubMed  Google Scholar 

  • Di Pucchio T, Chatterjee B et al (2008) Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol 9(5):551–557

    PubMed Central  PubMed  Google Scholar 

  • Dutoit V, Herold-Mende C et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135(Pt 4):1042–1054

    PubMed  Google Scholar 

  • Dzionek A, Fuchs A et al (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046

    PubMed  CAS  Google Scholar 

  • Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40(12):1825–1836

    PubMed  CAS  Google Scholar 

  • El Andaloussi A, Lesniak MS (2007) CD4(+) CD25(+)FoxP3(+) T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83(2):145–152

    PubMed  Google Scholar 

  • Fehervari Z, Sakaguchi S (2004) CD4+ Tregs and immune control. J Clin Invest 114(9):1209–1217

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fernandez NC, Lozier A et al (1999) Dendritic Cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5(4):405–411

    PubMed  CAS  Google Scholar 

  • Fife BT, Pauken KE (2011) The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 1217:45–59

    PubMed  CAS  Google Scholar 

  • Figdor CG, de Vries IJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480

    PubMed  CAS  Google Scholar 

  • Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641

    PubMed  CAS  Google Scholar 

  • Fong L, Hou Y et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 98(15):8809–8814

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fonteneau JF, Gilliet M et al (2003) Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101(9):3520–3526

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Long AJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S et al (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geiger JD, Hutchinson RJ et al (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61(23):8513–8519

    PubMed  CAS  Google Scholar 

  • Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gilliet M, Cao W et al (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606

    PubMed  CAS  Google Scholar 

  • Griffioen M, Borghi M et al (2004) Analysis of T-cell responses in metastatic melanoma patients vaccinated with dendritic cells pulsed with tumor lysates. Cancer Immunol Immunother 53(8):715–722

    PubMed  CAS  Google Scholar 

  • Guiducci C, Ott G et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hersey P, Menzies SW et al (2004) Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother 53(2):125–134

    PubMed  CAS  Google Scholar 

  • Higano CS, Schellhammer PF et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679

    PubMed  CAS  Google Scholar 

  • Hochrein H, Schlatter B et al (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 101(31):11416–11421

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hodi FS, O’Day SJ et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holtl L, Zelle-Rieser C et al (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8(11):3369–3376

    PubMed  CAS  Google Scholar 

  • Hsu FJ, Benike C et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1):52–58

    PubMed  CAS  Google Scholar 

  • Huysamen C, Willment JA et al (2008) CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 283(24):16693–16701

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ishida Y, Agata Y et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ito T, Amakawa R et al (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195(11):1507–1512

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ives NJ, Stowe RL et al (2007) Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol 25(34):5426–5434

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    PubMed  CAS  Google Scholar 

  • Jego G, Palucka AK et al (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19(2):225–234

    PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ et al (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527):151–155

    PubMed  CAS  Google Scholar 

  • Jonuleit H, Kuhn U et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142

    PubMed  CAS  Google Scholar 

  • Jonuleit H, Giesecke-Tuettenberg A et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93(2):243–251

    PubMed  CAS  Google Scholar 

  • Kadowaki N, Antonenko S et al (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192(2):219–226

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kadowaki N, Ho S et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaka AS, Foster AE et al (2008) Using dendritic cell maturation and IL-12 producing capacity as markers of function: a cautionary tale. J Immunother 31(4):359–369

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kalinski P, Vieira PL et al (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97(11):3466–3469

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Higano CS et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    PubMed  CAS  Google Scholar 

  • Khan S, Burt DJ et al (2011) Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells. Clin Immunol 138(1):85–96

    PubMed  CAS  Google Scholar 

  • Khoury SJ, Sayegh MH (2004) The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 20(5):529–538

    PubMed  CAS  Google Scholar 

  • Krug A, Towarowski A et al (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31(10):3026–3037

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245

    PubMed Central  PubMed  Google Scholar 

  • Kyte JA, Kvalheim G et al (2005) Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12(6):579–591

    PubMed  CAS  Google Scholar 

  • Kyte JA, Mu L et al (2006) Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther 13(10):905–918

    PubMed  CAS  Google Scholar 

  • Kyte JA, Kvalheim G et al (2007) T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother 56(5):659–675

    PubMed  CAS  Google Scholar 

  • Lang K, Entschladen F et al (2006) Tumor immune escape mechanisms: impact of the neuroendocrine system. Cancer Immunol Immunother 55(7):749–760

    PubMed  Google Scholar 

  • Langenkamp A, Messi M et al (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1(4):311–316

    PubMed  CAS  Google Scholar 

  • Latchman Y, Wood CR et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    PubMed  CAS  Google Scholar 

  • Laverman P, de Vries IJ et al (2006) Development of 111In-labeled tumor-associated antigen peptides for monitoring dendritic-cell-based vaccination. Nucl Med Biol 33(4):453–458

    PubMed  CAS  Google Scholar 

  • Lesterhuis WJ, de Vries IJ et al (2004) Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol 15(Suppl 4):iv145–iv151

    PubMed  Google Scholar 

  • Lesterhuis WJ, Aarntzen EH et al (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66(2):118–134

    PubMed  CAS  Google Scholar 

  • Lin CL, Lo WF et al (2002) Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 62(23):6952–6958

    PubMed  CAS  Google Scholar 

  • Lindstedt M, Lundberg K et al (2005) Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunol 175(8):4839–4846

    PubMed  CAS  Google Scholar 

  • Ling KL, Pratap SE et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed Central  PubMed  Google Scholar 

  • Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262

    PubMed  CAS  Google Scholar 

  • Lou Y, Liu C et al (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541

    PubMed  CAS  Google Scholar 

  • MacDonald KP, Munster DJ et al (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520

    PubMed  CAS  Google Scholar 

  • Maker AV, Attia P et al (2005) Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175(11):7746–7754

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maldonado-Lopez R, De Smedt T et al (1999) CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189(3):587–592

    PubMed Central  PubMed  CAS  Google Scholar 

  • Matsumoto M, Funami K et al (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171(6):3154–3162

    PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    PubMed  CAS  Google Scholar 

  • McIlroy D, Gregoire M (2003) Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol Immunother 52(10):583–591

    PubMed  Google Scholar 

  • Means TK, Hayashi F et al (2003) The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170(10):5165–5175

    PubMed  CAS  Google Scholar 

  • Meixlsperger S, Leung CS et al (2013) CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121(25):5034–5044

    PubMed  CAS  Google Scholar 

  • Miller AM, Lundberg K et al (2006) CD4+ CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405

    PubMed  CAS  Google Scholar 

  • Nair SK, Morse M et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235(4):540–549

    PubMed Central  PubMed  Google Scholar 

  • Napolitani G, Rinaldi A et al (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6(8):769–776

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nestle FO, Alijagic S et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4(3):328–332

    PubMed  CAS  Google Scholar 

  • Olson BM, McNeel DG (2013) Monitoring regulatory immune responses in tumor immunotherapy clinical trials. Front Oncol 3:109

    PubMed Central  PubMed  Google Scholar 

  • Ondondo B, Jones E et al (2013) Home sweet home: the tumor microenvironment as a haven for regulatory T cells. Front Immunol 4:197

    PubMed Central  PubMed  CAS  Google Scholar 

  • Palucka AK, Ueno H et al (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 29(5):545–557

    PubMed  CAS  Google Scholar 

  • Petersen RP, Campa MJ et al (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107(12):2866–2872

    PubMed  Google Scholar 

  • Piccioli D, Tavarini S et al (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109(12):5371–5379

    PubMed  CAS  Google Scholar 

  • Piccioli D, Sammicheli C et al (2009) Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation. Blood 113(18):4232–4239

    PubMed  CAS  Google Scholar 

  • Ponsaerts P, Van Tendeloo VF et al (2002) MRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia 16(7):1324–1330

    PubMed  CAS  Google Scholar 

  • Pulendran B, Smith JL et al (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 96(3):1036–1041

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pulendran B, Dillon S et al (2004) Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 34(1):66–73

    PubMed  CAS  Google Scholar 

  • Reis e Sousa C (2004) Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 16(1):21–25

    PubMed  CAS  Google Scholar 

  • Renn CN, Sanchez DJ et al (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177(1):298–305

    PubMed  CAS  Google Scholar 

  • Ribas A, Glaspy JA et al (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27(5):354–367

    PubMed  CAS  Google Scholar 

  • Ribas A, Camacho LH et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23(35):8968–8977

    PubMed  CAS  Google Scholar 

  • Ridolfi R, Petrini M et al (2006) Improved overall survival in dendritic cell vaccination-induced immunoreactive subgroup of advanced melanoma patients. J Transl Med 4:36

    PubMed Central  PubMed  Google Scholar 

  • Robert C, Thomas L et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    PubMed  CAS  Google Scholar 

  • Romani N, Gruner S et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93

    PubMed  CAS  Google Scholar 

  • Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10(3):281–287

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC et al (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salcedo M, Bercovici N et al (2006) Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother 55(7):819–829

    PubMed  CAS  Google Scholar 

  • Salio M, Palmowski MJ et al (2004) CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199(4):567–579

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    PubMed  CAS  Google Scholar 

  • Schadendorf D, Ugurel S et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17(4):563–570

    PubMed  CAS  Google Scholar 

  • Schaft N, Dorrie J et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174(5):3087–3097

    PubMed  CAS  Google Scholar 

  • Schlitzer A, McGovern N et al (2013) IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970–983

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schott M, Feldkamp J et al (1999) Dendritic cell immuno-therapy in disseminated parathyroid carcinoma. Lancet 353(9159):1188–1189

    PubMed  CAS  Google Scholar 

  • Schreibelt G, Tel J et al (2010) Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother 59(10):1573–1582

    PubMed  CAS  Google Scholar 

  • Schuler-Thurner B, Dieckmann D et al (2000) Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 165(6):3492–3496

    PubMed  CAS  Google Scholar 

  • Schuler-Thurner B, Schultz ES et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195(10):1279–1288

    PubMed Central  PubMed  CAS  Google Scholar 

  • Serafini P, Borrello I et al (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65

    PubMed  CAS  Google Scholar 

  • Shaw J, Wang YH et al (2010) Plasmacytoid dendritic cells regulate B-cell growth and differentiation via CD70. Blood 115(15):3051–3057

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sheikh NA, Petrylak D et al (2013) Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother 62(1):137–147

    PubMed Central  PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837

    PubMed  CAS  Google Scholar 

  • Singh-Jasuja H, Scherer HU et al (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30(8):2211–2215

    PubMed  CAS  Google Scholar 

  • Skoberne M, Beignon AS et al (2004) Danger signals: a time and space continuum. Trends Mol Med 10(6):251–257

    PubMed  CAS  Google Scholar 

  • Small EJ, Schellhammer PF et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094

    PubMed  CAS  Google Scholar 

  • Soruri A, Kiafard Z et al (2003) IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. J Immunol 170(6):3306–3314

    PubMed  CAS  Google Scholar 

  • Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stift A, Friedl J et al (2003) Dendritic cell-based vaccination in solid cancer. J Clin Oncol 21(1):135–142

    PubMed  CAS  Google Scholar 

  • Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418(6894):252–258

    PubMed  CAS  Google Scholar 

  • Takagi H, Fukaya T et al (2011) Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35(6):958–971

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kuniyasu Y et al (1998) Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    PubMed  CAS  Google Scholar 

  • Tel J, Aarntzen EH et al (2013) Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 73(3):1063–1075

    PubMed  CAS  Google Scholar 

  • Thompson RH, Kuntz SM et al (2006) Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res 66(7):3381–3385

    PubMed  CAS  Google Scholar 

  • Thurner B, Haendle I et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190(11):1669–1678

    PubMed Central  PubMed  CAS  Google Scholar 

  • Topalian SL, Hodi FS et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    PubMed Central  PubMed  CAS  Google Scholar 

  • Toungouz M, Libin M et al (2001) Transient expansion of peptide-specific lymphocytes producing IFN-gamma after vaccination with dendritic cells pulsed with MAGE peptides in patients with mage-A1/A3-positive tumors. J Leukoc Biol 69(6):937–943

    PubMed  CAS  Google Scholar 

  • Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028

    PubMed  CAS  Google Scholar 

  • Ueno H, Tcherepanova I et al (2004) Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. J Immunol Methods 285(2):171–180

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Braedel S et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277(23):20847–20853

    PubMed  CAS  Google Scholar 

  • Wang RF (2006) Immune suppression by tumor-specific CD4+ regulatory T-cells in cancer. Semin Cancer Biol 16(1):73–79

    PubMed  Google Scholar 

  • Warger T, Osterloh P et al (2006) Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 108(2):544–550

    PubMed  CAS  Google Scholar 

  • Wolchok JD, Neyns B et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164

    PubMed  CAS  Google Scholar 

  • Yamanaka R, Abe T et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89(7):1172–1179

    PubMed Central  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S et al (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    PubMed Central  PubMed  CAS  Google Scholar 

  • Youn JI, Collazo M et al (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91(1):167–181

    PubMed Central  PubMed  CAS  Google Scholar 

  • Youn JI, Kumar V et al (2013) Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14(3):211–220

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Z, Yuan B et al (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12(10):959–965

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Maric I et al (2013) Fibrocytes represent a novel MDSC subset circulating in patients with metastatic cancer. Blood 122(7):1105–1113

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Figdor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Westdorp, H., Bol, K.F., Coşkuntürk, M., Schreibelt, G., de Vries, I.J.M., Figdor, C.G. (2014). Dendritic Cell-Based Cancer Vaccines. In: Britten, C., Kreiter, S., Diken, M., Rammensee, HG. (eds) Cancer Immunotherapy Meets Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-05104-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05104-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05103-1

  • Online ISBN: 978-3-319-05104-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics