Skip to main content

Oncolytic Viruses

  • Chapter
  • First Online:
Cancer Immunotherapy Meets Oncology

Abstract

Oncolytic viruses, i.e., replicating viruses used for the treatment of cancer patients, have shown efficacy quite recently in large advanced clinical trials. Although originally developed to specifically infect and thereby directly destroy malignant cells by viral cytotoxicity, an important part of their therapeutic efficacy has been demonstrated to currently rely on in situ induction of antitumoral immunity caused by virus replication. Therefore, application of oncolytic viruses can be considered as an immunotherapeutic approach. The interactions between the viruses and the patients’ immune systems are nevertheless multifaceted and have to be carefully analyzed and modulated to gain a synergistic effect. This chapter aims to outline the nature of oncolytic viruses with their multiple levels of interaction with the patients’ immune system, to summarize state-of-the-art developments to enhance the immunotherapeutic effect, to provide an overview over the advanced clinical trials, and to close with a short outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aymeric L et al (2010) Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70:855–858

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DL et al (2013) Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 12:103

    Article  PubMed Central  PubMed  Google Scholar 

  • Bluming AZ, Ziegler JL (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2:105–106

    Article  PubMed  CAS  Google Scholar 

  • Bridle BW et al (2009) Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 17:1814–1821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bridle BW et al (2010) Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 18:1430–1439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cattaneo R, Miest T, Shashkova EV, Barry MA (2008) Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat Rev Microbiol 6:529–540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diaz RM et al (2007) Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 67:2840–2848

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  PubMed  CAS  Google Scholar 

  • Elsedawy NB, Russell SJ (2013) Oncolytic vaccines. Expert Rev Vaccin 12:1155–1172

    Article  CAS  Google Scholar 

  • Errington F et al (2008) Reovirus activates human dendritic cells to promote innate antitumor immunity. J Immunol 180:6018–6026

    Article  PubMed  CAS  Google Scholar 

  • Fisher KD, Seymour LW (2010) HPMA copolymers for masking and retargeting of therapeutic viruses. Adv Drug Deliv Rev 62:240–245

    Article  PubMed  CAS  Google Scholar 

  • Garber K (2006) China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 98:298–300

    Article  PubMed  Google Scholar 

  • Gauvrit A et al (2008) Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res 68:4882–4892

    Article  PubMed  CAS  Google Scholar 

  • Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grossardt C et al (2013) Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 24:644–654

    Article  PubMed  CAS  Google Scholar 

  • Grote D, Cattaneo R, Fielding AK (2003) Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res 63:6463–6468

    PubMed  CAS  Google Scholar 

  • Haisma HJ et al (2009) Scavenger receptor A: a new route for adenovirus 5. Mol Pharm 6:366–374

    Article  PubMed  CAS  Google Scholar 

  • Hansen RM, Libnoch JA (1978) Remission of chronic lymphocytic leukemia after smallpox vaccination. Arch Intern Med 138:1137–1138

    Article  PubMed  CAS  Google Scholar 

  • Heo J et al (2013) Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 19:329–336

    Article  PubMed  CAS  Google Scholar 

  • Ilett EJ et al (2009) Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther 16:689–699

    Article  PubMed  CAS  Google Scholar 

  • Ilett EJ et al (2011) Internalization of oncolytic reovirus by human dendritic cell carriers protects the virus from neutralization. Clin Cancer Res 17:2767–2776

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kanerva A et al (2013) Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res 19:2734–2744

    Article  PubMed  CAS  Google Scholar 

  • Kaufman HL, Bines SD (2010) OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 6:941–949

    Article  PubMed  CAS  Google Scholar 

  • Kottke T et al (2011) Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nat Med 17:854–859

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ling X et al (2010) Mesenchymal stem cells overexpressing IFN-beta inhibit breast cancer growth and metastases through stat3 signaling in a syngeneic tumor model. Cancer Microenviron 3:83–95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu BL et al (2003) ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10:292–303

    Article  PubMed  CAS  Google Scholar 

  • Mader EK et al (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15:7246–7255

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mastrangelo MJ et al (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 6:409–422

    Article  PubMed  CAS  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    Article  PubMed  CAS  Google Scholar 

  • Melcher A, Parato K, Rooney CM, Bell JC (2011) Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 19:1008–1016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meng S, Xu J, Wu Y, Ding C (2013) Targeting autophagy to enhance oncolytic virus-based cancer therapy. Expert Opin Biol Ther 13:863–873

    Article  PubMed  CAS  Google Scholar 

  • Miest TS, Cattaneo R (2014) New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 12:23–34

    Article  PubMed  CAS  Google Scholar 

  • Peng KW et al (2013) Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther 20:255–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pulido J et al (2012) Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 30:337–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30:658–670

    Article  PubMed  CAS  Google Scholar 

  • Tesfay MZ et al (2013) PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice. J Virol 87:3752–3759

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tong AW et al (2012) Oncolytic viruses for induction of anti-tumor immunity. Curr Pharm Biotechnol 13:1750–1760

    Article  PubMed  CAS  Google Scholar 

  • Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852

    Article  PubMed  CAS  Google Scholar 

  • Vigil A, Martinez O, Chua MA, Garcia-Sastre A (2008) Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther 16:1883–1890

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wongthida P et al (2011) Activating systemic T-cell immunity against self tumor antigens to support oncolytic virotherapy with vesicular stomatitis virus. Hum Gene Ther 22:1343–1353

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang YQ, Tsai YC, Monie A, Wu TC, Hung CF (2010) Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy. Mol Ther 18:692–699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Roberto Cattaneo (Mayo Clinic, Rochester, MN) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Mühlebach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mühlebach, M.D., Hutzler, S. (2014). Oncolytic Viruses. In: Britten, C., Kreiter, S., Diken, M., Rammensee, HG. (eds) Cancer Immunotherapy Meets Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-05104-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05104-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05103-1

  • Online ISBN: 978-3-319-05104-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics