Skip to main content

Towards More Specificity and Effectivity in the Antileukemia Immune Response

  • Chapter
  • First Online:
Cancer Immunotherapy Meets Oncology

Abstract

Experimental and clinical studies have shown that alloreactive T-cell responses derived from donor lymphocytes can effectively eliminate leukemia cells after allogeneic hematopoietic stem cell transplantation. However, there are still too many patients in whom this graft-versus-leukemia reactivity is insufficient to prevent leukemia relapse or who suffer from severe alloreactivity to nonmalignant host tissues also mediated by donor-derived T cells. Therefore, various conceptually different approaches have been developed at the level of donor T cells in order to improve the efficacy of leukemia-directed immunity while reducing the incidence of unwanted graft-versus-host disease. As outlined in this chapter, these approaches include myeloid leukemia vaccines to specifically stimulate leukemia-reactive T cells as well as the selective depletion of alloreactive T cells or even entire T-cell subsets and the add-back of undepleted cell fractions after transplantation. Early experimental and clinical results have demonstrated the safety of these approaches and remarkable efficacy in single patients. Moving them now forward will require randomized prospective clinical trials to define the precise role of these immunotherapeutic agents preferably in prophylactic and preemptive disease settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André-Schmutz I et al (2002) Immune reconstitution without graft-versus-host disease after hemopoietic stem-cell transplantation: a Phase 1/2 study. Lancet 360:130–137

    Article  PubMed  Google Scholar 

  • Bethge WA et al (2006) Haploidentical allogeneic hematopoietic cell transplantation in adults with reduced-intensity conditioning and CD3/CD19 depletion: fast engraftment and low toxicity. Exp Hematol 34:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4:371–380

    Article  PubMed  CAS  Google Scholar 

  • Bocchia M et al (2005) Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365:657–662

    Article  PubMed  CAS  Google Scholar 

  • Cathcart K et al (2004) A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Chaise C et al (2008) DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 112:2956–2964

    Article  PubMed  CAS  Google Scholar 

  • Ciceri F et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical hemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised Phase 1–2 study. Lancet Oncol 10:489–500

    Article  PubMed  Google Scholar 

  • Distler E et al (2011) Alloreactive and leukemia-reactive T cells are preferentially derived from naive precursors in healthy donors: implications for immunotherapy with memory T cells. Haematologica 96:1024–1032

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foster AE et al (2004) Human CD62L- memory T cells are less responsive to alloantigen stimulation than CD62L + naive T cells: potential for adoptive immunotherapy and allodepletion. Blood 104:2403–2409

    Article  PubMed  CAS  Google Scholar 

  • Giralt S et al (1995) CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 86:4337–4343

    PubMed  CAS  Google Scholar 

  • Graf C et al (2007) A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 109:2985–2988

    PubMed  CAS  Google Scholar 

  • Greiner J et al (2010) High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 95:1191–1197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Greiner J et al (2012) Mutated nucleophosmin 1 elicit both CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia. Blood 120:1282–1289

    Article  PubMed  CAS  Google Scholar 

  • Guinan EC et al (1999) Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med 340:1704–1714

    Article  PubMed  CAS  Google Scholar 

  • Handgretinger R et al (2012) Negative depletion of CD3(+) and TcRαβ(+) T cells. Curr Opin Hematol 19:434–439

    Article  PubMed  CAS  Google Scholar 

  • Hartwig UF et al (2008) Depletion of alloreactive donor T lymphocytes by CD95-mediated activation-induced cell death retains antileukemic, antiviral, and immunoregulatory T cell immunity. Biol Blood Marrow Transplant 14:99–109

    Article  PubMed  CAS  Google Scholar 

  • Keilholz U et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113:6541–6548

    Article  PubMed  CAS  Google Scholar 

  • Li Z et al (2005) Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res 11:4460–4468

    Article  PubMed  CAS  Google Scholar 

  • Meyer RG et al (2007) Prophylactic transfer of CD8-depleted donor lymphocytes after T-cell-depleted reduced-intensity transplantation. Blood 109:374–382

    Article  PubMed  CAS  Google Scholar 

  • Mielke S et al (2008) A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood 111:4392–4402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mielke S et al (2011) Selectively T cell-depleted allografts from HLA-matched sibling donors followed by low-dose posttransplantation immunosuppression to improve transplantation outcome in patients with hematologic malignancies. Biol Blood Marrow Transplant 17:1855–1861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nonn M et al (2008) Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 86:1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Orti G et al (2009) Phase I study of high-stringency CD8 depletion of donor leukocyte infusions after allogeneic hematopoietic stem cell transplantation. Transplantation 88:1312–1318

    Article  PubMed  Google Scholar 

  • Padua RA et al (2003) PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat Med 9:1413–1417

    Article  PubMed  CAS  Google Scholar 

  • Quintarelli C et al (2011) High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood 117:3353–3362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rezvani K et al (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111:236–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rutten CE et al (2008) HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia 22:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Salomon SR et al (2005) Selective Depletion of donor lymphocytes: a novel method to reduce the severity of graft-versus-host disease in older patients undergoing matched sibling donor stem cell transplantation. Blood 106:1123–1129

    Article  CAS  Google Scholar 

  • Soiffer RJ et al (1990) Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood 75:2076–2084

    PubMed  CAS  Google Scholar 

  • Teschner D et al (2014) Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant 49(1):138–144

    Article  PubMed  CAS  Google Scholar 

  • Tsirigitis P et al (2012) Immunotherapeutic approaches to improve graft-versus-tumor effect and reduce graft-versus-host disease. Immunotherapy 4:407–424

    Article  CAS  Google Scholar 

  • Wehler TC et al (2007) Targeting the activation-induced antigen CD137 can selectively deplete alloreactive T cells from antileukemic and antitumor donor T-cell lines. Blood 109:365–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Herr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hartwig, U.F., Meyer, R.G., Herr, W. (2014). Towards More Specificity and Effectivity in the Antileukemia Immune Response. In: Britten, C., Kreiter, S., Diken, M., Rammensee, HG. (eds) Cancer Immunotherapy Meets Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-05104-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05104-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05103-1

  • Online ISBN: 978-3-319-05104-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics