Skip to main content

Agitation and Fluid Mixing Technology

  • Chapter
  • First Online:

Abstract

Many industrial processes rely on effective agitation and mixing of fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In English literature the term blending are most commonly used describing mixing of miscible liquids, whereas the term mixing is used describing mixing of immiscible liquids, powders, etc [53].

  2. 2.

    The torque or angular moment is defined as the tendency of a force to rotate the body to which it is applied. Torque is thus a force that affects rotational motion and is always specified with regard to the axis of rotation.

  3. 3.

    Thrust is defined as the propulsive force developed by a jet-propelled motor.

  4. 4.

    The work done by the impeller on the fluid is equal to the thrust multiplied by the distance [83] (p. 423), as is discussed in the subsequent section.

  5. 5.

    Turbomachines are dynamic fluid machines that add (for pumps) or extract (for turbines) flow energy.

  6. 6.

    In other contexts, the turbine head is sometimes written as \(h_{\text {T}} = - (h_{\text {Shaft}}-h_{\text {Friction}})_T\), where the subscript \(T\) refers to the turbine component of the contents of the control volume only. The quantity \(h_{\text {T}}\) is the actual head drop across the turbine and is the sum of the shaft work head out of the turbine and the head loss within the turbine. When a pump is in the control volume, \(h_{\text {P}} = (h_{\text {Shaft}}-h_{\text {Friction}})_P\) is often used where \(h_{\text {P}}\) is the actual head rise across the pump an is equal to the difference between the shaft work into the pump and the head loss within the pump. Notice that the \(h_{\text {Friction}}\) used for the turbine and the pump is the head loss within that unit only. When \(h_s\) is used in the extended Bernoulli equation, \(h_{\text {Friction}}\) involves all losses including those within the turbine, pump or compressor. When \(h_{\text {T}}\) or \(h_{\text {P}}\) is used for \(h_{\text {Shaft}}\), then \(h_{\text {Friction}}\) includes all losses except those associated with the turbine or pump flows.

  7. 7.

    The laboratory frame equations can also be obtained from the rotational frame formulation, if we let \({{\varvec{\Omega }}}=0\).

  8. 8.

    The virtual Coriolis and centrifugal forces due to the earth’s rotation are normally added to \(g_\theta \) and \(g_r\), as shown in (7.115).

  9. 9.

    Recently, an Eulerian derivation of the Coriolis force has been reported by Kageyama and Hyodo [45]. They present a general procedure to derive the transformed equations in the rotating frame of reference based on the local Galilean transformation and rotational coordinate transformation of field quantities.

  10. 10.

    Hansen [34] gives an informative derivation of the momentum equations in cylindrical coordinates employing an inertial frame.

  11. 11.

    This turbulence model is similar to the standard \(k\)-\(\varepsilon \) model, but with altered model parameter values and the effect of swirl on turbulence is included in the RNG mode intending to enhance the accuracy of swirling flow simulations.

References

  1. Andersson R (2005) Dynamics of fluid particles in turbulent flows. CFD simulations, Model development and phenomenological studies. Ph.D. thesis. Chalmers University of Technology, Göteborg

    Google Scholar 

  2. Baldyga J, Bourne JR (1999) Turbulent mixing and chemical reactions. John Wiley & Sons, Chichester

    Google Scholar 

  3. Basara B, Alajbegovic A, Beader D (2004) Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method. Int J Numer Meth 45:1137–1159

    Article  MATH  Google Scholar 

  4. Batchelor GK (1959) Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J Fluid Mech 5:113–133

    Article  MATH  MathSciNet  Google Scholar 

  5. Batchelor GK (1982) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Batchelor GK (1983) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  7. Biswas G, Eswaran V (2002) Turbulent flows, fundamentals. Experiments and modeling. Aplha Science International Ltd, Pangbourne

    MATH  Google Scholar 

  8. Brodkey RS (1967) The phenomena of fluid motion. Addison-Wesley Publishing Company, Reading, Massachusetts

    Google Scholar 

  9. Brucato A, Ciofalo M, Grisafi F, Micale G (1994) Complete numerical simulation of flow fields in baffled stirred vessels: the Inner-outer approach. Eight European conference on mixing, Cambridge (ISBN 0852953291)

    Google Scholar 

  10. Brucato A, Ciofalo M, Grisafi F, Micale G (1998) Numerical prediction of flow fields in baffled stirred vessels: a comparison of alternative modelling approaches. Chem Eng Sci 53(21):3653–3684

    Article  Google Scholar 

  11. Chen YS, Kim SW (1987) Computation of turbulent flows using an extended \(k\)-\(\varepsilon \) turbulence closure model. NASA, Report CR-179204

    Google Scholar 

  12. Ciofalo M, Brucato A, Grisafi F, Torraca N (1996) Turbulent flow in closed and free-surface unbaffled tanks stirred by radial impellers. Chem Eng Sci 51(14):3557–3573

    Article  Google Scholar 

  13. Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22:469–473

    Google Scholar 

  14. Corrsin S (1964) Further generalization of Onsager’s cascade model for turbulent spectra. Phys Fluids 7:1156–1159

    Article  MathSciNet  Google Scholar 

  15. Corrsin S (1974) Limitations of gradient transport models in random walks and in turbulence. In: Landsberg HE, van Mieghem J (eds) Advances in geophysics. Academic Press, New York, p 18A

    Google Scholar 

  16. Crowe CT, Elger DF, Roberson JA (2001) Engineering fluid mechanics, 7th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  17. Druecker M (1999) Simulation of the flow field of stirred tank reactors: comparison between computational results and experiments. Studienarbeit summary report, AAchen, Germany

    Google Scholar 

  18. Derksen J, van den Akker HEA (1999) Large Eddy simulations on the flow driven by a Rushton turbine. AIChE J 45(2):209–221

    Article  Google Scholar 

  19. Dyster KN, Koutsakos E, Jaworski Z, Nienow AW (1993) An LDA study of the radial discharge velocities generated by a Rushton turbine: Newtonian fluids, Re \(\ge \) 5. Trans IChemE 71A:11–23

    Google Scholar 

  20. Eggels JGM (1996) Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme. Int J Heat and Fluid Flow 17:307–323

    Article  Google Scholar 

  21. EKATO (2000) Handbook of mixing technology. Rühr- und Mischtechnik GmbH, Schopfheim, Germany (ISBN 3-00-0052 46-1)

    Google Scholar 

  22. Engeskaug R (1998) Modeling of chemical reactors with impellers. M.Sc. thesis, Høgskolen i Telemark, Norway

    Google Scholar 

  23. Engeskaug R, Thorbjørnsen E, Svendsen HF (2005) Wall heat transfer in stirred tank reactors. Ind Eng Chem Res 44:4949–4958

    Article  Google Scholar 

  24. Fluent user’s guide (1996) Release 4.4, vol 1–4. Fluent Inc, Lebanon, NH 03766

    Google Scholar 

  25. Fox RO (1996) Computational methods for turbulent reacting flows in the chemical process industry. Revue de L’Institut Francais du petrole 51(2):215–243

    Article  Google Scholar 

  26. Fox RO (2003) Computational models for turbulent reacting flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Geankoplis CJ (1993) Transport processes and unit operations, 3rd edn. PTR Prentice Hall International Editions, Englewood Cliffs

    Google Scholar 

  28. Ghil M, Childress S (1987) Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory, and climate dynamics. Applied mathematical sciences. Springer, New-York

    Book  Google Scholar 

  29. Gill AE (1982) Atmosphere - Ocean Dynamics. Academic Press Inc, San Diego

    Google Scholar 

  30. Gosman AD, Lekakou C, Polits S, Issa RI, Looney MK (1992) Multidimensional modeling of turbulent two-phase flows in stirred vessels. AIChE J 38(12):1946–1956

    Article  Google Scholar 

  31. Greenspan HP (1980) The theory of rotating fluids. Cambridge University Press, Cambridge

    Google Scholar 

  32. G\(\ddot{u}\)nkel AA, Weber ME (1975) Flow phenomena in stirred tanks. Part I: the impeller stream. AIChe J 21 (5):931–949

    Google Scholar 

  33. Hagesaether L (2002) Coalescence and break-up of drops and bubbles. Dr. Ing thesis. The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  34. Hansen AG (1967) Fluid mechanics. John Wiley and Sons Inc, New York

    Google Scholar 

  35. Haque AG, Mahmud T, Roberts KJ (2006) Modeling turbulent flows with free-surface in unbaffled agitated vessels. Ind Eng Chem Res 45:2881–2891

    Article  Google Scholar 

  36. Harris CK, Roekaerts D, Rosendal FJJ, Buitendijk FGJ, Daskopoulas PH, Vreenegoor AJN, Wang H (1996) Computational fluid dynamics for chemical reactor engineering. Chem Eng Sci 51:1569–1594

    Article  Google Scholar 

  37. Harvey PS, Greaves M (1982) Turbulent flow in an agitated vessel. Part I: A predictive model. Trans IChemE 60:195–200

    Google Scholar 

  38. Harvey PS, Greaves M (1982) Turbulent flow in an agitated vessel. Part II: numerical simulation and model predictions. Trans IChemE 60:201–210

    Google Scholar 

  39. Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys Bd 124:628–657

    Article  MATH  MathSciNet  Google Scholar 

  40. Hewitt GF, Shires GL, Bott TR (1994) Process heat transfer, Chap. 31 (heat transfer in agitated vessels). CRC Press Inc, Boca Raton, pp 937–954

    Google Scholar 

  41. Hinze JO (1975) Turbulence, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  42. Irgens F (1999) Dynamikk, 4th edn. Tapir Forlag, Trondheim

    Google Scholar 

  43. Jakobsen HA (2001) Struggle on the modeling of swirling flow phenomena in multiphase chemical reactors. 426th EUROMECH & ERCOFTAC colloquium on swirling flows. Bergen-Tromsø, 16–20th Sept. Printed in book of abstracts

    Google Scholar 

  44. Jenne M, Reuss M (1999) A critical assessment on the use of \(k\)-\(\varepsilon \) turbulence models for simulation of the turbulent liquid flow induced by a Rushton-turbine in baffled stirred-tank reactors. Chem Eng Sci 54:3921–3941

    Article  Google Scholar 

  45. Kageyama A, Hyodo M (2006) Euler derivation of the Coriolis force. Geochem Geophys Geosyst 7(2):1–5 (ISSN:1525-2027)

    Google Scholar 

  46. Kemoun A, Lusseyran F, Mahouast M, Mallet J (1994) Experimental determination of the complete reynolds stress tensor in fluid agitated by a Rushton turbine. In: Eight European conference on mixing, Cambridge IChemE Symposium Series No 136, pp 399–406 (ISBN 0852953291)

    Google Scholar 

  47. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303 (in Russian)

    Google Scholar 

  48. Kresta SM, Wood PE (1993) The flow field produced by a piched blade turbine: characterisation of turbulence and estimation of the sissipation rate. Chem Engng Sci 48:1761–1774

    Article  Google Scholar 

  49. Lane GL, Schwartz MP, Evans GM (2000) Comparison of CFD methods for modeling of stirred tank. In: Proceedings of 10th European conference on mixing, Delft, The Netherlands, July, pp 273–280

    Google Scholar 

  50. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  51. Lo S (2000) Some recent developments and applications of CFD to multiphase flows in stirred reactors. In: Proceedings AMIF-ESF workshop on computing methods for two-phase flow. Aussois, France, 12–14 Jan

    Google Scholar 

  52. Luo JY, Gosman AD, Issa RI, Middleton JC, Fitzgerald MK (1994) Full flow field computation of mixing in baffled stirred vessels. Trans IChemE 71(A):342–344

    Google Scholar 

  53. Lydersen A, Dahlø I (1988) Ordbok for kjemiteknikk (In Norwegian). Tapir Forlag, Trondheim

    Google Scholar 

  54. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  55. Marshall E, Haidari A, Subbiah S (1996) Paper presented at AIChE annual meeting, Chicago, November

    Google Scholar 

  56. Menter FR (1992), Improved two-equation \(k\)-\(\varepsilon \) turbulence models for aerodynamic flows. NASA technical memorandum 103975

    Google Scholar 

  57. Menter FR (1994) Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  58. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST turbulence model. In: Hanjalic K, Nagano Y, Tummers M (eds) Turbulence, heat and mass transfer 4. Begell House Inc, New York, pp 625–632

    Google Scholar 

  59. Moilanen P, Laakonen M, Aittamaa J (2006) Modeling aerated fermenters with computational fluid dynamics. Ind Eng Chem Res 45:8656–8663

    Article  Google Scholar 

  60. Mortensen M (2005) Mathematical modeling of turbulent reactive flows. Ph.D. thesis, Chalmers University of Technology, Göteborg

    Google Scholar 

  61. Mujumdar AS, Huang B, Wolf D, Weber ME, Douglas WJM (1970) Can J Chem Eng 48:475–483

    Article  Google Scholar 

  62. Munson BR, Young DF, Okiishi TH (2002) Fundamentals of fluid mechanics, 4th edn. John Wiley & Sons Inc, New York

    Google Scholar 

  63. Murthy JY, Mathur SR, Choudhury D (1994) CFD simulation of flows in stirred tank reactors using a sliding mesh technique. In: Eight European conference on mixing. ICHEME Symposium Series, No. 136, Cambridge, pp 341–348 (ISBN 0852953291)

    Google Scholar 

  64. Nienow AW (1997) On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem Eng Sci 52(15):2557–2565

    Article  Google Scholar 

  65. Oldshue JY (1983) Fluid mixing technology. McGraw-Hill, New York

    Google Scholar 

  66. Orszag SA, Yakhot V, Flannery WS, Boysan F, Choudhury D, Maruzewski J, Patel B (1993) Renormalization group modeling and turbulence simulations. In: So RMC, Speziale CG, Launder BE (eds) Near-wall turbulent flows. Elsevier, Amsterdam, New York, pp 1031–1046

    Google Scholar 

  67. Osenbroch LKH (2004) Experimental and computational study of mixing and fast chemical reactions in turbulent liquid flows. Ph.D. thesis, Aalborg University, Esbjerg

    Google Scholar 

  68. Pao Y-H (1965) Structure of turbulent velocity and scalar fields at large wavenumbers. Phys Fluids 8(6):1063–1075

    Article  Google Scholar 

  69. Pericleous KA, Patel MK (1987) The modelling of tangential and axial agitators in chemical reactors. PhysicoChem Hydrodyn 8(2):105–123

    Google Scholar 

  70. Perng CY, Murthy JY (1993) A moving-deforming-mesh technique for simulation of flow in mixing tanks. AIChE meeting, Miami beach, FL (1992). AIChE Symp Ser 89(293):37–41

    Google Scholar 

  71. Pope S (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11:119–192

    Article  MathSciNet  Google Scholar 

  72. Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  73. Ranade VV, Joshi JB (1990) Flow generated by a disc turbine: Part II. Mathematical modelling and comparison with experimental data. Trans IChemE 68A:34–50

    Google Scholar 

  74. Ranade VV, Van den Akker HEA (1994) A computational snapshot of gas-liquid flow in baffled stirred reactors. Chem Eng Sci 49(24B):5175–5192

    Article  Google Scholar 

  75. Ranade VV, Krishnan YTH (2002) CFD predictions of flow near impeller blades in baffled stirred vessels: assessment of computational snapshot approach. Chem Eng Comm 198:895–922

    Article  Google Scholar 

  76. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  77. Revstedt J, Fuchs L, Trägårdh C (1998) Large eddy simulations of the turbulent flow in a stirred reactor. Chem Eng Sci 53(24):4041–4053

    Article  Google Scholar 

  78. Rogers MM, Mansour NN, Reynolds WC (1989) An algebraic model for the turbulent flux of a passive scalar. J Fluid Mech 203:77–101

    Article  Google Scholar 

  79. Sabersky RH, Acosta AJ, Hauptmann EG, Gates EM (1999) Fluid flow: a first course in fluid mechanics, 4th edn. Prentice Hall, London

    Google Scholar 

  80. Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, Berlin

    Book  MATH  Google Scholar 

  81. Shih T-H, Liou WW, Shabbir A, Zhu J (1995) A New \(k\)-\(\varepsilon \) Eddy viscosity model for high Reynolds number turbulent flows. Comp Fluids 24(3):227–238

    Article  MATH  Google Scholar 

  82. Smith LM, Reynolds WC (1992) On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models. Phys Fluids A 4(2):364–390

    Article  MathSciNet  Google Scholar 

  83. Smits AJ (2000) A physical introduction to fluid mechanics. John Wiley & Sons Inc, New York

    Google Scholar 

  84. Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. Chem Eng Sci 26:95–107

    Article  MathSciNet  Google Scholar 

  85. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  86. Sudiyo R (2006) Fluid dynamics in gas-liquid stirred tank reactors: experimental and theoretical studies of bubble coalescence. Ph.D. thesis, Chalmers University of Technology, Göteborg

    Google Scholar 

  87. Tatterson GB (1991) Fluid mixing and gas dispersion in agitated tanks. McGraw-Hill, New York

    Google Scholar 

  88. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  89. Van’t Riet K, Smith JM (1973) The behavior of gas-liquid mixtures near Rushton turbine blades. Chem Engng Sci 28(1031–1037):1973

    Google Scholar 

  90. Van’t Riet K, Smith JM (1975) The trailing vortex system produced by Rushton turbine agitators. Chem Eng Sci 30:1093–1105

    Article  Google Scholar 

  91. Van’t Riet K, Bruijn W, Smith JM (1976) Real and Pseudo-turbulence in the discharge stream from a Rushton turbine. Chem Eng Sci 31:407–412

    Article  Google Scholar 

  92. Venneker BCH, Derksen JJ, van den Akker HEA (2002) Population balance modeling of aerated stirred vessels based on CFD. AIChE J 48(4):673–685

    Article  Google Scholar 

  93. Weisbach JL (1845) Lehrbuch der Ingenieur-und Machinenmechanick, Braunschwieg.

    Google Scholar 

  94. White FM (1999) Fluid mechanics, 4th edn. McGraw-Hill Inc, New York

    Google Scholar 

  95. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310

    Article  MATH  MathSciNet  Google Scholar 

  96. Yakhot A, Orszag S (1986) Renormalization group analysis of turbulence: I basic theory. J Sci Comput 1(1):3–51

    Article  MATH  MathSciNet  Google Scholar 

  97. Yakhot A, Smith LM (1992) The renormalization group, the \(\varepsilon \)-expansion and derivation of turbulence models. J of Sci Comput 7(1):35–60

    Article  MATH  MathSciNet  Google Scholar 

  98. Yakhot A, Orszag SA (1992) Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A 4(7):1510–1520

    Article  MATH  MathSciNet  Google Scholar 

  99. Young DF, Munson BR, Okiishi TH (2001) A brief introduction to fluid mechanics, 2nd edn. John Wiley & Sons Inc, New York

    Google Scholar 

  100. Zakrzewska B, Jaworski Z (2004) CFD modelling of turbulent jacket heat transfer in Rushton turbine stirred vessel. Chem Eng Technol 27(3):237–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Jakobsen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jakobsen, H.A. (2014). Agitation and Fluid Mixing Technology. In: Chemical Reactor Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-05092-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05092-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05091-1

  • Online ISBN: 978-3-319-05092-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics