Skip to main content

Numerical Solution Methods

  • Chapter
  • First Online:
  • 6071 Accesses

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this chapter several numerical methods frequently employed in reactor engineering are introduced. To simulate the important phenomena determining single- and multiphase reactive flows, mathematical equations with different characteristics have to be solved. The relevant equations considered are the governing equations of single phase fluid mechanics, the multi-fluid model equations for multiphase flows, and the population balance equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    FIDAP is a general purpose finite element code for simulating two-dimensional, axisymmetric, or full three dimensional equations of viscous incompressible Newtonian or non-Newtonian fluid flow, including the effects of heat transfer.

  2. 2.

    COMSOL Multiphysics/FEMLAB is an interactive FEM-based environment for modeling, implementation and solving scientific and engineering problems involving PDEs. This simulation software offers interface to MATLAB with toolboxes which gives MATLAB the ability to solve 2D PDEs by the Finite Element Method, including meshing, preprocessing and post processing capabilities.

  3. 3.

    A matrix which is \(n \times m\) with \(k\) non-zero entries is sparse if \(k \ll n \times m\).

  4. 4.

    The names elliptic, parabolic, and hyperbolic that denote the different characters of the equation, have arisen by analogy with the conic sections of analytic geometry [215, 257].

  5. 5.

    In the case of solving integro-PDE problems, the operator defined by formula (12.24) must also be used.

  6. 6.

    The (Lanczos) method was named the tau method because Lanczos used the letter \(\tau \) to represent the error.

  7. 7.

    This is an \(L_2\) inner product. The orthogonality condition states that the residual is orthogonal to the space of basis functions.

  8. 8.

    In an attempt to find an exact formula for the integral, we may resort to the mean value theorem of calculus. This theorem states that if the integrand is evaluated at a particular known instant \(t = \tau \) between \(t_n\) and \(t_{n+1}\), the integral is equal to \(f(\tau ,\psi (\tau )) \varDelta t\). However, in the present case the theorem is of little use since the instant \(\tau \) is unknown.

  9. 9.

    In a few textbooks these methods are referred to as two-level methods because they involve the values of the unknown at two time levels [56].

  10. 10.

    The conservation law together with piecewise constant data having a single discontinuity is known as the Riemann problem [134].

  11. 11.

    The early meteorological finite difference studies of long-term numerical time integrations of the equations of fluid motion, which involve non-linear convection terms, revealed the presence of non-linear instabilities due to aliasing errors [6, 171173, 259]. To avoid the occurrence of these non-linear instabilities, Arakawa [6] was the first to recognize the importance of the use of numerical schemes which conserve kinetic energy.

  12. 12.

    The velocity- and pressure correction equations in IPSA are frequently derived using the SIMPLEC method (i.e., the SIMPLE- Consistent approximation) by van Doormal and Raithby [239].

  13. 13.

    It is noted that the method of presumed distribution functions was originally proposed by Hulburt and Katz [90]. The QMOM may thus be considered an extension of the Hulburt and Katz [90] procedure [230].

  14. 14.

    The matrix \({\mathcal {M}}\) is symmetric if \({\mathcal {A}}={\mathcal {A}}^T\). The matrix is said to be positive definite if the Euclidean inner product \(({\mathbf {x}},{{\mathcal {M}}}{\mathbf {x}})>0\) whenever \({\mathbf {x}}\ne 0\) [205]. The Euclidean inner product between two vectors \({\mathbf {x}}\) and \({\mathbf {y}}\) is defined as \(({\mathbf {x}},{\mathbf {y}})={\mathbf {x}}^T {\mathbf {y}}=\sum _{l=1}^n x_l y_l\).

  15. 15.

    If the matrix \({\mathcal {A}}\) is symmetric, then two vectors \({\mathbf {x}}\) and \({\mathbf {y}}\) are conjugate or A-orthogonal if the A-inner product \(({\mathbf {x}},{\mathbf {y}})_{{\mathcal {A}}} = ({\mathcal {A}} {\mathbf {x}},{\mathbf {y}})=({\mathbf {x}},{\mathcal {A}} {\mathbf {y}}) = 0\) holds [205]. Vectors are orthogonal if \(({\mathbf {x}},{\mathbf {y}})=0\).

  16. 16.

    Several stop criteria can be defined in terms of different norms of the residual [205]. The general \(p\)-norm of a vector is defined as \(||{\mathbf {r}}||_p = (\sum _{i=1}^n |r_i|^p)^{1/p}\). When \(p\) tends to infinity, the vector norm becomes \(||{\mathbf {r}}||_\infty = \max |{\mathbf {r}}|\).

References

  1. Alipanah A, Razzaghi M, Dehghan M (2007) Nonclassical pseudospectral method for the solution of brachistochrone problem. Chaos Solitons Fractals 34:1622–1628

    MATH  MathSciNet  Google Scholar 

  2. Amsden AA, Harlow FH (1970) The SMAC method: a numerical technique for calculating incompressible fluid flows. Los Alamos Scientific Laboratory Report 4370

    Google Scholar 

  3. Andersson HI, Kristoffersen R (1989) Numerical simulation of unsteady viscous flow. Arch Mech 41(2–3):207–223

    Google Scholar 

  4. Anderson JD Jr (1995) Computational fluid dynamics: the basics with applications. McGraw-Hill Inc, New York

    Google Scholar 

  5. Antal SP, Lahey Jr RT, Al-Dahhan MH (2004) Simulating Churn-Turbulent flows in a bubble column using a three field, two-fluid model. Paper presented at the 5th international conference on multiphase flow, ICMF’04, Yokohama, Japan, 30 May–4 June, p 182

    Google Scholar 

  6. Arakawa A (1966) Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J Comput Phys 1:119–143

    MATH  Google Scholar 

  7. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang J (ed) Methods in computational physics, vol 17. Academic Press, New York, pp 173–265

    Google Scholar 

  8. Attarakih MM, Bart H-J, Faqir NM (2003) Optimal moving and fixed grids for the solution of discretized population balances in batch and continuous systems: droplet breakage. Chem Eng Sci 58:1251–1269

    Google Scholar 

  9. Attarakih MM, Bart H-J, Faqir NM (2004) Numerical solution of the spatially distributed population balance equation describing the hydrodynamics of interacting liquid–liquid dispersions. Chem Eng Sci 59:2567–2592

    Google Scholar 

  10. Attarakih MM, Drumm C, Bart H-J (2009) Solution of the population balance equation using the sectional method of moments (SQMOM). Chem Eng Sci 64:742–752

    Google Scholar 

  11. Bates JR, McDonald A (1982) Multiply-upstream, semi-lagrangian advective schemes: analysis and application to a multi-level primitive equation model. Mon Weather Rev 110: 1831–1842

    Google Scholar 

  12. Berge E, Jakobsen HA (1998) A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus B 50(3):205–223

    Google Scholar 

  13. Bochev PB, Gunzburger MD (1998) Finite element methods of least-squares type. SIAM Rev 40:789–837

    MATH  MathSciNet  Google Scholar 

  14. Bochev P (2001) Finite element methods based on least-squares and modified variational principles. Technical report, POSTECH

    Google Scholar 

  15. Bochev PB, Gunzburger MD (2004) Least-squares finite-element methods for optimization and control problems for the Stokes equations. Comput Math Appl 48:1035–1057

    MATH  MathSciNet  Google Scholar 

  16. Bochev P, Gunzburger MD (2009) Least-squares finite element methods. Springer, New York

    MATH  Google Scholar 

  17. Bolton P, Thatcher RW (2005) On mass conservation in least-squares methods. J Comput Phys 203:287–304

    MATH  MathSciNet  Google Scholar 

  18. Boris JP, Book DL (1973) Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J Comput Phys 11:38–69

    MATH  Google Scholar 

  19. Bott A (1989) A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon Weather Rev 117:1006–1015

    Google Scholar 

  20. Bott A (1989) Reply. Mon Weather Rev 117:2633–2636

    Google Scholar 

  21. Bove S (2005) Computational fluid dynamics of gas-liquid flows including bubble population balances. Ph.D. thesis, Aalborg University Esbjerg, Denmark

    Google Scholar 

  22. Boyd JP (2001) Chebyshev and Fourier spectral methods, 2nd edn. Dover, Mineola

    MATH  Google Scholar 

  23. Brandt A (1977) Multi-level adaptive solutions to boundary-value problems. Math Comput 31:333–390

    MATH  Google Scholar 

  24. Brandt A (1981) Multigrid solvers on parallel computers. In: Schultz MH (ed) Elliptic problem solvers. Academic Press, New York, pp 39–84

    Google Scholar 

  25. Briggs WL (1987) A multigrid tutorial, 2nd edn. SIAM Publications, Philadelphia

    Google Scholar 

  26. Burns A, Splawsky A, Lo S, Guetari C (2001) Application of coupled technology to CFD modeling of multiphase flows with CFX. In: Power H, Brebbia CA (eds) Computational methods in multiphase flow. Proceedings of the 1st international conference on computational methods in multiphase flow, 14–16 March 2001, Orlando, FL. WIT Press, Southampton

    Google Scholar 

  27. Cameron IT, Wang FY, Immanuel CD, Stepanek F (2005) Process systems modelling and applications in granulation: a review. Chem Eng Sci 60:3723–3750

    Google Scholar 

  28. Canuto C, Quarteroni A, Hussaini MY, Zang T (1988) Spectral methods in fluid mechanics. Springer, New York

    Google Scholar 

  29. Caretto LS, Curr RM, Spalding DB (1972) Two numerical methods for three dimensional boundary layers. Comput Methods Appl Eng 1:39–57

    MATH  Google Scholar 

  30. Carrica PM, Drew D, Bonetto F, Lahey RT Jr (1999) A polydisperse model for bubbly two-phase flow around a surface ship. Int J Multiph Flow 25(2):257–305

    MATH  Google Scholar 

  31. Carver MB (1981) Conservation and pressure-continuity relationship in multidimensional two fluid computation. Carver MB (1981) Conservation and pressure-continuity relationship in multidimensional two fluid computation. In: Vichnevetsky R (ed) Advances in computer methods for partial differential equations IV. IMACS Press, Brussels, pp 168–175

    Google Scholar 

  32. Carver MB (1984) Numerical computation of phase separation in two fluid flow. J Fluids Eng 106:147–153

    Google Scholar 

  33. Cheney W, Kincaid D (2008) Numerical mathematics and computing, 6th edn. Thomson-Brooks/Cole Publishing Company, Belmont

    Google Scholar 

  34. Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2:12–26

    Google Scholar 

  35. Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22: 745–762

    Google Scholar 

  36. Chiu WK, Soria J, Norton MP (1989) Application of a pseudospectral (collocation) method to unsteady flow problems. In: Proceedings from the tenth AustralAsian fluid mechanics conference, the University of Melbourne, 11–15 Dec

    Google Scholar 

  37. Courant R, Isaacson E, Reeves M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5:243–255

    MATH  Google Scholar 

  38. Crandall SH (1956) Engineering analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  39. Dabdub D, Seinfeld JH (1994) Numerical advective schemes used in air quality models—sequential and parallell implementation. Atmos Environ 28(20):3369–3385

    Google Scholar 

  40. Demirdžić I, Lilek Ž, Perić M, (1993) A collocated finite volume method for predicting flows at all speeds. Int J Numer Methods Fluids 16:1029–1050

    Google Scholar 

  41. Deville MO, Fischer PF, Mund EH (2002) High-order methods for incompressible fluid flow. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  42. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester

    Google Scholar 

  43. Dorao CA (2006) High order methods for the solution of the population balance equation with applications to bubbly flows. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  44. Dorao CA, Jakobsen HA (2006) A least squares method for the solution of population balance problems. Comput Chem Eng 30:535–547

    Google Scholar 

  45. Dorao CA, Jakobsen HA (2006) Application of the least-squares method for solving population balance problems in R\(^{d+1}\). Chem Eng Sci 61:5070–5081

    Google Scholar 

  46. Dorao CA, Jakobsen HA (2006) Numerical calculation of the moments of the population balance equation. J Comput Appl Math 196:619–633

    MATH  MathSciNet  Google Scholar 

  47. Dorao CA, Jakobsen HA (2007) A parallel time-space least-squares spectral element solver for incompressible flow problems. Appl Math Comput 185(1):45–58

    MATH  MathSciNet  Google Scholar 

  48. Dorao CA, Jakobsen HA (2007) Time-space-property least squares spectral method for population balance problems. Chem Eng Sci 62(5):1323–1333

    Google Scholar 

  49. Dorao CA, Jakobsen HA (2007) Least-squares spectral method for solving advective population balance problems. J Comput Appl Math 201(1):247–257

    MATH  MathSciNet  Google Scholar 

  50. Drikakis D, Rider W (2005) High-resolution methods for incompressible and low-speed flows. Part II, Chap. 10, pp 173–208. Springer, Berlin. ISBN 978-3-540-22136-4

    Google Scholar 

  51. Edwards CH, Penny DE (2002) Calculus, 6th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  52. Falola A, Borissova A, Wang XZ (2013) Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage. Comput Chem Eng 56:1–11

    Google Scholar 

  53. Fan R, Marchisio DL, Fox RO (2004) Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technol 139:7–20

    Google Scholar 

  54. Felten FN, Lund TS (2006) Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow. J Comput Phys 215:465–484

    MATH  MathSciNet  Google Scholar 

  55. Fernandino M, Dorao CA, Jakobsen HA (2007) Jacobi Galerkin spectral method for cylindrical and spherical geometries. Chem Eng Sci 62(23):6777–6783

    Google Scholar 

  56. Ferziger JH, Peric M (1996) Computational methods for fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  57. Ferziger JH (1998) Numerical methods for engineering applications, 2nd edn. Wiley, New York

    Google Scholar 

  58. Filbet F, Laurençot P (2004) Numerical simulation of the Smoluchowski coagulation equation. SIAM J Sci Comput 25(6):2004–2028

    MATH  MathSciNet  Google Scholar 

  59. Finlayson BA (1972) The method of weighted residuals and variational principles: with application in fluid mechanics, heat and mass transfer. Academic Press, New York

    MATH  Google Scholar 

  60. Fletcher R (1976) Conjugrate gradient methods for infinite systems. In: Watson G (ed) Proceedings of the Dundee conference on numerical analysis, 1975. Lecture notes in mathematics, vol 506. Springer, Berlin, pp 73–89

    Google Scholar 

  61. Fletcher CAJ (1991) Computational techniques for fluid dynamics, vols I and II. Springer, Berlin

    Google Scholar 

  62. Fornberg B, Sloan CM (1994) A review of pseudospectral methods for solving partial differential equations. Acta Numer 3:203–267

    MathSciNet  Google Scholar 

  63. Fornberg B (1998) A practical guide to pseudospectral methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  64. Forsythe GE, WasoW WR (1960) Finite-difference methods for partial differential equations. Wiley, New York

    MATH  Google Scholar 

  65. Fortin M, Peyert R, Temam R (1971) Résolution numérique des équations de Navier-Stokes pour un fluide incompressible. J Méc 10:357–390

    MATH  Google Scholar 

  66. Frank T, Zwart PJ, Shi J-M, Krepper E, Lucas D, Rohde U (2005) Inhomogeneous MUSIG model—a population balance approach for polydispersed bubbly flows. In: International conference on nuclear energy for New Europe 2005, Bled, Slovenia, 5–8 Sept

    Google Scholar 

  67. Galerkin BG (1915) Series solution of some problems in elastic equilibrium of rods and plates. Vestn Inzh Tech 19:897–908

    Google Scholar 

  68. Gaskell PH, Lau AKC (1988) Curvature-compensated convective transport: SMART, a new boundedness preserving transport algorithm. Int J Numer Methods Fluids 8:617–641

    MATH  MathSciNet  Google Scholar 

  69. Gautschi W (2006) Orthogonal polynomials, quadrature and approximation: computational methods and software (in Matlab). In: Marcellàn F, van Assche W (eds) Orthogonal polynomials and special functions: computation and applications. Lecture notes in mathematics, vol 183. Springer, Berlin, pp 1–77

    Google Scholar 

  70. Gelbard F, Tambour Y, Seinfeld JH (1980) Sectional representation for simulating aerosol dynamics. J Colloid Interface Sci 76(2):541–556

    Google Scholar 

  71. Golub GH, Welsch JH (1969) Calculation of Gauss quadrature rules. Math Comput 23:221–230

    MATH  MathSciNet  Google Scholar 

  72. Golub GH (1973) Some modified matrix eigenvalue problems. SIAM Rev 15:318–334

    MATH  MathSciNet  Google Scholar 

  73. Gordon RG (1968) Error bounds in equilibrium statistical mechanics. J Math Phys 9:655–672

    MATH  Google Scholar 

  74. Gottlieb D, Orszag SA (1977) Numerical analysis of spectral methods. SIAM, Philadelphia

    MATH  Google Scholar 

  75. Grace JR, Taghipour F (2004) Verification and validation of CFD models and dynamic similarity for fluidized beds. Powder Technol 139:99–110

    Google Scholar 

  76. Grandin H Jr (1991) Fundamentals of the finite element method. Waveland Press Inc, Prospect Heights

    Google Scholar 

  77. Grienberger J (1992) Untersuchung und Modellierung von Blasensäulen. Dr ing Thesis, Der Technischen Fakultät der Universität Erlangen-Nürnberg, Germany

    Google Scholar 

  78. Gudunov SK (1959) A difference scheme for numerical calculation of discontinuous solutions of hydrodynamic equations. Matematichaskiy Sbornik (Mathematics collection), 47(3):271–306 (in Russian). English Translation: US Joint Publications Research Service, JPRS-7225 (1960)

    Google Scholar 

  79. Hackbusch W (1985) Multigrid methods and applications. Springer, Berlin

    Google Scholar 

  80. Haltiner GJ, Williams RT (1980) Numerical prediction and dynamic meteorology, 2nd edn. Wiley, New York

    Google Scholar 

  81. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182–2189

    MATH  Google Scholar 

  82. Harlow FH, Amsden AA (1971) A numerical fluid dynamics calculation method for all flow speeds. J Comput Phys 8:197–213

    MATH  Google Scholar 

  83. Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357–393

    MATH  MathSciNet  Google Scholar 

  84. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res NBS 49(6):409–436

    Google Scholar 

  85. Hirsch C (1988) Numerical computation of internal and external flows. Volume I: fundamentals of numerical discretization. Wiley, Chichester

    Google Scholar 

  86. Hirsch C (1990) Numerical computation of internal and external flows. Volume II: computational methods for invicid and viscous flows. Wiley, Chichester

    Google Scholar 

  87. Hirt CW, Nichols BD, Romero NC (1975) SOLA—a numerical solution algorithm for transient fluid flows. Los Alamos Scientific Laboratory Report 5852

    Google Scholar 

  88. Hounslow MJ, Ryall RL, Marshall VR (1988) A discretized population balance for nucleation, growth, and aggregation. AIChE J 34(11):1821–1832

    Google Scholar 

  89. Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  90. Hulburt HM, Katz S (1964) Some problems in particle technology—a statistical mechanical formulation. Chem Eng Sci 19(8):555–574

    Google Scholar 

  91. Hutchinson BR, Raithby GD (1986) A multigrid based on the additive correction strategy. Numer Heat Transf 9:511–537

    Google Scholar 

  92. Hutchinson BR, Galpin PF, Raithby GD (1988) Application of additive correction multigrid to the coupled fluid flow equations. Numer Heat Transf 13:133–147

    MATH  Google Scholar 

  93. Issa RI, Lockwood FC (1977) On the prediction of two-dimensional supersonic viscous interactions near walls. AIAA J 15(2):182–188

    MATH  Google Scholar 

  94. Jakobsen HA (1993) On the modeling and simulation of bubble column reactors using a two-fluid model. Dr ing thesis, The Norwegian Institute of Technology, Trondheim, Norway

    Google Scholar 

  95. Jakobsen HA, Lindborg H, Handeland V (2002) A numerical study of the interactions between viscous flow, transport and kinetics in fixed bed reactors. Comput Chem Eng 26:333–357

    Google Scholar 

  96. Jakobsen HA (2003) Numerical convection algorithms and their role in Eulerian CFD reactor simulations. Int J Chem Reactor Eng A1:1–15

    MathSciNet  Google Scholar 

  97. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 44:5107–5151

    Google Scholar 

  98. Jiang B-N (1998) The least-squares finite element method: theory and applications in computational fluid dynamics and electromagnetics. Springer, Berlin

    MATH  Google Scholar 

  99. Jonson JE, Bartnicki J, Olendrzynski K, Jakobsen HA, Berge E (1998) EMEP Eulerian model for atmospheric transport and deposition of nitrogen species over Europe. Environ Pollut 102:289–298 (Suppl 1)

    Google Scholar 

  100. Karema H, Lo S (1999) Efficiency of interface coupling algorithms in fluidized bed conditions. Comput Fluids 28:323–360

    MATH  Google Scholar 

  101. Karki KC, Patankar SV (1989) Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J 27(9):1167–1174

    Google Scholar 

  102. Karki KC, Patankar SV (2004) Application of the partial elimination algorithm for solving the coupled energy equations in porous media. Numer Heat Transf Part A 45:539–549

    Google Scholar 

  103. Karniadakis GEM, Sherwin SJ (1999) Spectral/hp element methods for CFD. Oxford University Press, New York

    MATH  Google Scholar 

  104. Kelly JM, Stewart CW, Cuta JM (1992) VIPRE-02—a two-fluid thermal-hydraulics code for reactor core and vessel analysis: mathematical modeling and solution methods. Nucl Technol 100:246–259

    Google Scholar 

  105. Khosla PK, Rubin SG (1974) A diagonally dominant second order accurate implicit scheme. J Comput Fluids 2:207–209

    MATH  Google Scholar 

  106. Kim J, Moin P (1985) Application of a fractional-step method to incompressible Navier-Stokes equations. J Comput Phys 59:308–323

    MATH  MathSciNet  Google Scholar 

  107. Kiusalaas J (2005) Numerical methods in engineering with python. Cambridge University Press, New York

    MATH  Google Scholar 

  108. Kostoglou M, Karabelas AJ (2009) On the sectional techniques for the solution of the breakage equation. Comput Chem Eng 33:112–121

    Google Scholar 

  109. Kreiss H-O, Oliger J (1972) Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24:199–215

    MathSciNet  Google Scholar 

  110. Krepper E, Lucas D, Prasser H-M (2005) On the modelling of bubbly flow in vertical pipes. Nucl Eng Des 235:597–611

    Google Scholar 

  111. Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations. Chem Eng Sci 54:4903–4911

    Google Scholar 

  112. Kumar S, Ramkrishna D (1996) On the solution of population balance equations by discretizations. I. A fixed pivot technique. Chem Eng Sci 51:1311–1332

    Google Scholar 

  113. Kumar J, Peglow M, Warneche G, Heinrich S, Mörl L (2006) Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem Eng Sci 61(10):3327–3342

    Google Scholar 

  114. Kumar J, Warneche G (2008) Convergence analysis of sectional methods for solving breakage population balance equations—I: the fixed pivot technique. Numer Math 111:81–108

    MATH  MathSciNet  Google Scholar 

  115. Kunz RF, Yu W-S, Antal SP, Ettorre SM (2001) An unstructured two-fluid method based on the coupled phasic exchange algorithm. Report AIAA-2001-2672, American Institute of Aeronautics and Astronautics, Herndon, VA

    Google Scholar 

  116. Kunz RF, Siebert BW, Cope WK, Foster NF, Antal SP, Ettorre SM (1998) A coupled phasic exchange algorithm for three-dimensional multi-field analysis of heated flows with mass transfer. Comput Fluids 27(7):741–768

    MATH  Google Scholar 

  117. Kwak D, Kiris C, Dacles-Mariani J (1998) An assessment of artificial compressibility and pressure projection methods for incompressible flow simulations. In: Bruneau CH (ed) Sixteenth international conference on numerical methods in fluid dynamics, vol 515. Proceedings of the conference held in Arcachon, France, 6–10 July 1998. Springer, Berlin

    Google Scholar 

  118. Lanczos C (1938) Trigonometric interpolation of empirical and analytical functions. J Math Phys 17:123–199

    Google Scholar 

  119. Lapidus L, Pinder GF (1992) Numerical solution of partial differential equations in science and engineering. Wiley, New York

    Google Scholar 

  120. Lathouwers D, van den Akker HEA. (1996) A numerical method for the solution of two-fluid model equations. In: Numerical methods for multiphase flows. FED-Vol 236, pp 121–126. ASME

    Google Scholar 

  121. Lathouwers D (1999) Modeling and simulation of turbulent bubbly flow. Ph.D. thesis, The Technical University in Delft, The Netherlands.

    Google Scholar 

  122. Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7:159–193

    MATH  MathSciNet  Google Scholar 

  123. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

    MATH  Google Scholar 

  124. Leonard BP (1988) Universal limiter for transient interpolation modeling of the advective transport equations: the ULTIMATE conservative difference scheme. Science report NASA-TM 100916 (ICOMP-88-11), NASA Lewis Research Center

    Google Scholar 

  125. Leonard BP, Mokhtari S (1990) Beyond first-order upwinding: the ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection. Int J Numer Methods Eng 30:729–766

    Google Scholar 

  126. Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Methods Appl Mech Eng 88:17–74

    MATH  Google Scholar 

  127. Leonard BP, Niknafs, (1991) SHARP monotonic resolution of discontinuities without clipping of narrow extrema. Comput Fluids 19(1):141–154

    Google Scholar 

  128. Leonard BP, Mokhtari S (1992) ULTRA-SHARP solution of the Smith-Hutton problem. Int J Num Heat Flow 2:407–427

    Google Scholar 

  129. Leonard BP, MacVean MK, Lock AP (1995) The flux integral method for multidimensional convection and diffusion. Appl Math Model 19:333–342

    MATH  Google Scholar 

  130. Leonard BP, Lock AP, MacVean MK (1995) The NIRVANA scheme applied to one-dimensional advection. Int J Meth Heat Fluid Flow 5:341–377

    MATH  MathSciNet  Google Scholar 

  131. Leonard BP (1995) Order of accuracy of QUICK and related convection-diffusion schemes. Appl Math Model 19:640–653

    Google Scholar 

  132. Leonard BP, Drummond JE (1995) Why you should not use hybrid, power-law or related exponential schemes for convective modeling—there are much better alternatives. Int J Numer Methods Fluids 20:421–442

    MATH  Google Scholar 

  133. Leonard BP, Lock AP, MacVean MK (1996) Conservative explicit unrestricted-time-step multidimensional constancy-preserving advection schemes. Mon Weather Rev 124:2588–2606

    Google Scholar 

  134. Le Veque RJ (1992) Numerical methods for conservation laws. Birkhauser Verlag, Basel

    Google Scholar 

  135. Lindborg H, Eide V, Unger S, Henriksen ST, Jakobsen HA (2004) Parallelization and performance optimization of a dynamic PDE ractor model for practical applications. Comput Chem Eng 28:1585–1597

    Google Scholar 

  136. Lindborg H, Lysberg M, Jakobsen HA (2007) Practical validation of the two-fluid model applied to dense gas-solid flows in fluidized beds. Chem Eng Sci 62:5854–5869

    Google Scholar 

  137. Lindborg H (2008) Modeling and simulation of reactive two phase flows in fluidized beds. Dr ing thesis, The Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  138. Lindborg H, Jakobsen HA (2009) Sorption enhanced steam methane reforming process performance and bubbling fluidized bed reactor design analysis by use of a two-fluid model. Ind Eng Chem Res 48:1332–1342

    Google Scholar 

  139. MacCormack RW (1969) The effect of viscosity in hypervelocity impact cratering. AIAA paper no 69-354

    Google Scholar 

  140. Marchi CH, Maliska CR (1994) A non-orthogonal finite-volume method for the solution of all speed flows using co-located variables. Numer Heat Transf Part B 26:293–311

    Google Scholar 

  141. Marchisio DL, Vigil RD, Fox RO (2003) Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem Eng Sci 58(15):3337–3351

    Google Scholar 

  142. Marchisio DL, Vigil RD, Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. J Colloid Interface Sci 258(2):322–334

    Google Scholar 

  143. Marchisio DL, Fox RO (2005) Solution of population balance equations using the direct quadrature method of moments. Aerosol Sci 36:43–73

    Google Scholar 

  144. Marchuk GI (1974) Numerical methods in weather prediction. Academic Press, New York

    Google Scholar 

  145. Melaaen MC (1992) Calculation of fluid flows with staggered and nonstaggered curvilinear nonorthogonal Grids-the theory. Numer Heat Transf Part B 21(1):1–19

    Google Scholar 

  146. Melaaen MC (1992) Calculation of fluid flows with staggered and nonstaggered curvilinear nonorthogonal Grids-a comparison. Numer Heat Transf Part B 21(1):21–39

    Google Scholar 

  147. Mercle CL, Athavale M (1987) Time-accurate unsteady Incompressible flow algorithms based on artificial Compressibility. AIAA Paper 87–1137, AIAA Press Washington, DC

    Google Scholar 

  148. McBryan OA, van de Velde EF (1987) Hypercube algorithms and implementations. SIAM J Sci Stat Comput 8:5227–5287

    Google Scholar 

  149. McDonald A (1984) Accuracy of multiply-stream, semi-lagrangian advective schemes. Mon Weather Rev 112:1267–1275

    Google Scholar 

  150. McDonald A (1987) Accuracy of multiply-stream, semi-lagrangian advective schemes II. Mon Weather Rev 115:1446–11450

    Google Scholar 

  151. McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27:255–265

    Google Scholar 

  152. Mercier B (1989) An introduction to the numerical analysis of spectral methods. Springer, Berlin

    MATH  Google Scholar 

  153. Michelsen ML, Villadsen J (1981) Polynomial solution of differential equations. In: Mah RSH, Seider WD (eds) Foundations of computer-aided chemical process design. Engineering Foundation, New York, pp 341–368

    Google Scholar 

  154. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms for fluid flow at all speeds. Numer Heat Transf Part B 37:103–139

    Google Scholar 

  155. Nakamura S (2002) Numerical analysis and graphic visualization with MATLAB, 2nd edn. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  156. Nayak AK, Borka Z, Patruno LE, Sporleder F, Dorao CA, Jakobsen HA (2010) A combined multifluid-population balance model for vertical gas-liquid bubble driven flows considering bubble column operating conditions. Ind Eng Chem Res 50:1786–1798

    Google Scholar 

  157. O’Brien CG, Hyman MA, Kaplan S (1959) A study of the numerical solution of partial differential equations. J Math Phys 29:223–251

    MathSciNet  Google Scholar 

  158. Odman MT (1997) A quantitative analysis of numerical diffusion introduced by advection algorithms in air quality models. Atmos Environ 31(13):1933–1940

    Google Scholar 

  159. Olendrzynski K, Jonson JE, Bartnicki J, Jakobsen HA, Berge E (2000) EMEP Eulerian model for acid deposition over Europe. Int J Environ Pollut 14(1–6):391–399

    Google Scholar 

  160. Oliveira PJ, Issa RI (1994) On the numerical treatment of interfaphase forces in two-phase flow. In: Crowe CT (ed) Numerical methods in multiphase flows, FED-Vol 185. ASME Press, New York, pp 131–140

    Google Scholar 

  161. Orszag SA (1972) Comparison of pseudospectral and spectral approximations. Stud Appl Math 51:253–259

    MATH  Google Scholar 

  162. Pasciak JE (1980) Spectral and pseudo spectral methods for advection equations. Math Comput 35(152):1081–1092

    MATH  MathSciNet  Google Scholar 

  163. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806

    MATH  Google Scholar 

  164. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere publishing corporation, New York

    MATH  Google Scholar 

  165. Patruno LE, Dorao CA, Dupuy PM, Svendsen HF, Jakobsen HA (2009) Identification of droplet breakage kernel for population balance modelling. Chem Eng Sci 64(4):638–645

    Google Scholar 

  166. Patruno LE, Dorao CA, Svendsen HF, Jakobsen HA (2009) Analysis of breakage kernel for population balance modelling. Chem Eng Sci 64(3):501–508

    Google Scholar 

  167. Patruno LE, Dorao CA, Svendsen HF, Jakobsen HA (2009) On the modelling of droplet-film inteaction considering entrainment, deposition and breakage processes. Chem Eng Sci 64(6):1362–1371

    Google Scholar 

  168. Patruno LE (2010) Experimental and numerical investigations of liquid fragmentation and droplet generation for gas processing at high pressure. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

    Google Scholar 

  169. Payret R (2002) Spectral methods for incompressible viscous flow. Springer, New York

    Google Scholar 

  170. Pfleger D, Becker S (2001) Modeling and simulation of the dynamic flow behaviour in a bubble column. Chem Eng Sci 56(4):1737–1747

    Google Scholar 

  171. Phillips NA (1956) The general circulation of the atmosphere: a numerical experiment. Q J R Meteorol Soc 82:123–164

    Google Scholar 

  172. Phillips NA (1959) An example of non-linear computational instability. In: Bolin B (ed) The atmosphere and sea in motion. Rockefeller Institute Press, New York, and Oxford University Press, Oxford, pp 501–504

    Google Scholar 

  173. Piacsek SA, Williams GP (1970) Conservation propeties of convection difference schemes. J Comput Phys 6:392–405

    Google Scholar 

  174. Pontaza JP (2003) Least-squares variational principles and finite element methods: theory, formulations, and models for solid and fluid mechanics. Ph.D. thesis, Texas A & M University, USA

    Google Scholar 

  175. Pontaza JP, Reddy JN (2003) Spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equation. J Comput Phys 190:523–549

    MATH  MathSciNet  Google Scholar 

  176. Pontaza JP, Reddy JN (2004) Space-time coupled spectral/hp least squares finite element formulation for the incompressible Navier-Stokes equation. J Comput Phys 190:418–459

    MathSciNet  Google Scholar 

  177. Pontaza JP (2006) A least-squares finite element formulation for unsteady incompressible flows with improved velocity-pressure coupling. J Comput Phys 217:563–588

    MATH  MathSciNet  Google Scholar 

  178. Pontaza JP (2006) A new consistent splitting scheme for incompressible Navier-Stokes flows: a least-squares spectral element implementation. J Comput Phys 225:1590–1602

    MathSciNet  Google Scholar 

  179. Pontaza JP, Reddy JN (2006) Least-squares finite element formulations for viscous incompressible and compressible fluid flows. Appl Mech Eng 195:2454–2494

    MATH  MathSciNet  Google Scholar 

  180. Post D, Kendall R (2003) Software project management and quality engineering practices for complex, coupled multiphysics, massively parallel computational simulations: Lessons learned from ASCI. Int J High Perform Comput Appl 18(4):399–416

    Google Scholar 

  181. Prather MJ (1986) Numerical advection by conservation of second order moments. J Geophys Res 91(D6):6671–6681

    Google Scholar 

  182. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77. The art of scientific computing, vol 1, 2 edn. Cambridge University Press, New York

    Google Scholar 

  183. Proot MMJ, Gerritsma MI (2002) A least-squares spectral element formulation for Stokes problem. J Sci Comput 17(1–4):285–296

    MATH  MathSciNet  Google Scholar 

  184. Proot MMJ (2003) The least-squares spectral element method. Ph.D. thesis, Delft University of Technology, The Netherlands

    Google Scholar 

  185. Proot MMJ, Gerritsma MI (2006) Mass- and momentum conservation of the least-squares spectral element method for the Stokes problem. J Sci Comput 27(1–3):389–401

    MATH  MathSciNet  Google Scholar 

  186. Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic Press, San Diego

    Google Scholar 

  187. Randolph AD, Larson MA (1971) Theory of particulate processes: analysis and techniques of continuous crystallization. Academic Press, New York

    Google Scholar 

  188. Raw M (1994) A coupled algebraic multigrid method for the 3D Navier-stokes equations. In: Hackbusch W, Wittum G (eds) Fast solvers for flow problems. Proceedings of the 10th GAMM-Seminar Kiel, 14–16 Jan, 1994. Notes on numerical fluid mechanics, vol 49. Vieweg-Verlag, Braunschweig

    Google Scholar 

  189. Raw M (1996) Robustness of coupled algebraic multigrid for the Navier-stokes equations. Technical Paper AIAA 96-0297. AIAA Press, Washington, DC, Presented at 34th aerospace science meeting and exhibit, 15–18 Jan, Reno, NV

    Google Scholar 

  190. Rayleigh JW (1870) In finding the correction for open end of an organ-pipe. Phil Trans 161:77

    Google Scholar 

  191. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    MATH  Google Scholar 

  192. Rice RG, Do DD (1995) Applied mathematics and modeling for chemical engineers. Wiley, New York

    Google Scholar 

  193. Richtmyer RD, Morton KW (1967) Difference methods for initial value problems. Wiley, New York

    MATH  Google Scholar 

  194. Ritz W (1908) Über eine neue Methode zur Lösnung gewisses Variationsprobleme der Mathematishen Physik. J Reine Angew Math 135:1–61

    MATH  Google Scholar 

  195. Roache PJ (1992) A flux-based modified method of characteristics. Int J Numer Methods Fluids 15:1259–1275

    MATH  Google Scholar 

  196. Roache PJ (1998) Fundamentals of computational fluid dynamics. Hermosa Publishers, New Mexico

    Google Scholar 

  197. Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357–372

    MATH  MathSciNet  Google Scholar 

  198. Roe PL (1985) Some contributions to the modeling of discontinuous flow. Lect Appl Math 22:163–192

    MathSciNet  Google Scholar 

  199. Roe PL (1986) Characteristic-based schemes for the Euler equations. Ann Rev Fluid Mech 18:337–365

    MathSciNet  Google Scholar 

  200. Rood RB (1987) Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev Geophys 25(1):71–100

    Google Scholar 

  201. Rout KR (2012) A study of the sorption-enhanced steam methane reforming process. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

    Google Scholar 

  202. Roy CJ (2005) Review of code and solution verification procedures for computational simulation. J Comput Phys 205:131–156

    MATH  Google Scholar 

  203. Russell GL, Lerner JA (1981) A finite-difference scheme for the tracer transport equation. J Appl Meteorol 20:1483–1498

    Google Scholar 

  204. Saad Y, Shultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comp 7(3):856–869

    MATH  Google Scholar 

  205. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  206. Salupere A (2009) The pseudospectral method and discrete spectral analysis. In: Quak E, Soomere T (eds) Applied wave mathematics. Springer, Heidelberg, pp 301–333

    Google Scholar 

  207. Sanders BF, Katopodes ND, Boyd JP (1998) Spectral modeling of nonlinear dispersive waves. J Hydraul Eng 124(1):2–12

    Google Scholar 

  208. Schiesser WE (1991) The numerical method of lines: integration of partial differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  209. Sha Z, Laari A, Turunen I (2004) Implementation of population balance into multiphase-model in CFD simulation of bubble column. In: Proceedings of 16th international congress of chemical and process engineering, Praha, Czech Republic (paper E3.2)

    Google Scholar 

  210. Sha Z, Laari A, Turunen I (2006) Multi-phase-multi-size-group model for the inclusion of population balances into the CFD simulation of gas-liquid bubbly flows. Chem Eng Technol 29(5):550–559

    Google Scholar 

  211. Shampine LF (1994) Numerical solution of ordinary differential equations. Chapman & Hall, New York

    MATH  Google Scholar 

  212. Shi J, Zwart P, Frank T, Rohde U, Prasser H (2004) Development of a multiple velocity multiple size group model for poly-dispersed multiphase flows. Annual report (2004). Institute of Safety Research, Forschungszentrum Rossendorf, Germany

    Google Scholar 

  213. Shyy W, Thakur SS, Ouyang H, Liu J, Blosch E (1998) Computational techniques for complex transport phenomena. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  214. Sidilkover D (2002) Factorable schemes for the equations of fluid flow. Appl Numer Math 41:423–436

    MATH  MathSciNet  Google Scholar 

  215. Smith GD (1985) Numerical solution of partial differential equations: finite difference methods, 3rd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  216. Smolarkiewicz PK (1983) A simple positive definite advection scheme with small implicit diffusion. Mon Weather Rev 11:479–486

    Google Scholar 

  217. Solsvik J, Jakobsen HA (2012) Effects of Jacobi polynomials on the numerical solution of the pellet equation using the orthogonal collocation, Galerkin, tau and least squares methods. Comput Chem Eng 39:1–21

    Google Scholar 

  218. Solsvik J, Jakobsen HA (2013) On the solution of the population balance equation for bubbly flows using the high-order least squares method:implementation issues. Rev Chem Eng 29(2):63–98

    Google Scholar 

  219. Spalding DB (1977) The calculation of free-convection phenomena in gas-liquid mixtures. ICHMT seminar 1976. In: Turbulent buoyant convection. Hemisphere, Washington, pp 569–586

    Google Scholar 

  220. Spalding DB (1980) Numerical computation of multiphase fluid flow and heat transfer. In: Morgan K, Taylor C (eds) Recent advances in numerical methods in fluids. Pineridge Press, Swansea, pp 139–167

    Google Scholar 

  221. Spalding DB (1980) Mathematical methods in nuclear reactor thermal hydraulics. In: Lahey RT (ed) Proceedings of ANS meeting on nuclear reactor thermal hydraulics, Saratoga NY, pp 1979–2023

    Google Scholar 

  222. Spalding DB (1981) IPSA 1981: new developments and computed results. Report HTS/81/2, Imperial College of Science and Technology, London

    Google Scholar 

  223. Spalding DB (1985) Computer simulation of two-phase flows, with special reference to nuclear-reactor systems. In: Lewis RW, Morgan K, Johnson JA, Smith WR (eds) Computational techniques in heat transfer. Pineridge Press, Swansea, pp 1–44

    Google Scholar 

  224. Sporleder F, Dorao CA, Jakobsen HA (2010) Simulation of chemical reactors using the least-squares spectral element method. Chem Eng Sci 65:5146–5159

    Google Scholar 

  225. Sporleder F (2011) Simulation of chemical reactors using the least-squares spectral element method. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

    Google Scholar 

  226. Sporleder F, Dorao CA, Jakobsen HA (2011) Model based on population balance for the simulation of bubble columns using methods of the least square type. Chem Eng Sci 66(14):3133–3144

    Google Scholar 

  227. Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal 5(3):506–517

    MATH  MathSciNet  Google Scholar 

  228. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21(5):995–1011

    MATH  MathSciNet  Google Scholar 

  229. Szegö G (1939) Orthogonal polynomials. American Mathematical Society, New York

    Google Scholar 

  230. Talukdar SS, Swihart MT (2004) Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods. Aerosol Sci 35:889–908

    Google Scholar 

  231. Tamamidis P, Zhang G, Assanis DN (1996) Comparison of pressure-based and artificial compressibility methods for solving 3D steady incompressible viscous flows. J Comput Phys 124:1–13

    MATH  Google Scholar 

  232. The Duc N (2005) An implicit scheme for incompressible flow computation with artificial compressibility method. VNU J Sci Math Phy T-XXI(4):1–13

    Google Scholar 

  233. Thomas LH (1949) Elliptic problems in linear differential equations over a network. Watson Science Computer Laboratory Report, Columbia University, New York

    Google Scholar 

  234. Thuburn J (1993) Use of flux-limited scheme for vertical advection in a GCM. Q J R Meteorol Soc 119:469–487

    Google Scholar 

  235. Thuburn J (1995) Dissipation and cascades to small scales in numerical models using a shape-preserving advection scheme. Mon Weather Rev 123(6):1888–1903

    Google Scholar 

  236. Thuburn J (1996) Multidimensional flux-limited advection schemes. J Comput Phys 123: 74–83

    Google Scholar 

  237. Thuburn J (1997) TVD Schemes, positive schemes, and the universal limiter. Mon Weather Rev 125(8):1990–1995

    Google Scholar 

  238. Tomiyama A, Shimada N (2001) A numerical method for bubbly flow simulation based on a multi-fluid model. J Press Vessel Technol Trans ASME 123(4):510–516

    Google Scholar 

  239. van Doormal JP, Raithby GD (1984) Enhancement of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transfer 7:147–163

    Google Scholar 

  240. van Doormal JP, Raithby GD, McDonald BH (1987) The segregated approach to predicting viscous compressible fluid flows. ASME J Turbomach 109:268–277

    Google Scholar 

  241. van Leer B (1974) Towards the ultimate conservation difference scheme II. monotonicity and conservation combined in a second order scheme. J Comput Phys 14(4):361–370

    MATH  Google Scholar 

  242. van Leer B (1977) Towards the ultimate conservation difference scheme IV. A new approach to numerical convection. J Comput Phys 23(3):276–299

    MATH  Google Scholar 

  243. van Leer B (1979) Towards the ultimate conservative difference scheme, V. J Comput Phys 32:101–136

    Google Scholar 

  244. van Leer B (1982) Flux-vector splitting for the Euler equations. Lect Notes Phys 170:507–512. Springer, Berlin

    Google Scholar 

  245. van Leer B (1997) Godunov’s method for gas-dynamics: current applications and future developments. J Comput Phys 132:1–2

    Google Scholar 

  246. van Leer B (2006) Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes. Commun Comput Phys 1(2):192–206

    MATH  Google Scholar 

  247. Vanni M (2000) Approximate population balance equations for aggregation—breakage processes. J Colloid Interface Sci 221:143–160

    Google Scholar 

  248. Versteeg HK, Malalasekera W (1996) An introduction to computational fluid dynamics: the finite method. Longman, Harlow

    Google Scholar 

  249. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite method. Pearson Prentice Hall, Harlow

    Google Scholar 

  250. Vichnevetsky R (1969) Use of functional approximation methods in the computer solution of initial value partial differential equation problems. IEEE Trans Comput C-18 18:499–512

    Google Scholar 

  251. Villadsen JV, Stewart WE (1967) Solution of boundary-value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501

    Google Scholar 

  252. Villadsen JV (1970) Selected approximation methods for chemical engineering problems. Danmarks Tekniske Højskole, København, Denmark

    Google Scholar 

  253. Villadsen J, Michelsen ML (1978) Solution of differential equations models by polynomial approximation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  254. Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite-difference methods. J Comput Phys 14:159–179

    MATH  MathSciNet  Google Scholar 

  255. Waterson NP, Deconinck H (2007) Design principles for bounded higher-order convection schemes—a unified approach. J Comput Phys 224:182–207

    MATH  MathSciNet  Google Scholar 

  256. Wesseling P (1992) An introduction to multigrid methods. Wiley, New York

    MATH  Google Scholar 

  257. White FM (1974) Viscous fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  258. Williams MMR, Loyalka SK (1991) Aerosol science theory and practice: with special applications to the nuclear industry. Pergamon Press, Oxford

    Google Scholar 

  259. Wissink JG (2004) On unconditional conservation of kinetic energy by finite-difference discretizations of the linear and non-linear convection equation. Comput Fluids 33:315–343

    MATH  MathSciNet  Google Scholar 

  260. Yanenko NN (1974) The methods of fractional steps: the solution of problems of mathematical physics in several variables. Springer, Berlin

    Google Scholar 

  261. Yang HQ, Przekwas AJ (1992) A comparative study of advanced shock-capturing schemes applied to Burgers’ equation. J Comp Phys 102:139–159

    MATH  MathSciNet  Google Scholar 

  262. Yuan C, Laurent F, Fox RO (2012) An extended quadrature method of moments for population balance equations. J Aerosol Sci 51:1–23

    Google Scholar 

  263. Zalesak ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31:335–362

    MATH  MathSciNet  Google Scholar 

  264. Zhu Z, Dorao CA, Jakobsen HA (2008) A least-squares method with direct minimization for the solution of the breakage-coalescence population balance equation. Math Comput Simul 79:716–727

    MATH  MathSciNet  Google Scholar 

  265. Zhu Z (2009) The least-squares spectral element method solution of the gas-liquid multi-fluid model coupled with the population balance equation. Ph.D. thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

    Google Scholar 

  266. Zhu Z, Dorao CA, Lucas D, Jakobsen HA (2009) On the coupled solution of a combined population balance model using the least-squares spectral element method. Ind Eng Chem Res 48:7994–8006

    Google Scholar 

  267. Zijlema M (1996) On the construction of a third-order accurate monotone convection scheme with applications to turbulent flows in general domains. Int J Numer Methods Fluids 22: 619–641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Jakobsen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jakobsen, H.A. (2014). Numerical Solution Methods. In: Chemical Reactor Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-05092-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05092-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05091-1

  • Online ISBN: 978-3-319-05092-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics