Skip to main content

Optimal Control of Nonlinear Hyperbolic Conservation Laws with Switching

  • Chapter
  • First Online:

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

Abstract

We consider optimal control problems governed by nonlinear hyperbolic conservation laws at junctions and analyze in particular the Fréchet-differentiability of the reduced objective functional. This is done by showing that the control-to-state mapping of the considered problems satisfies a generalized notion of differentiability. We consider both, the case where the controls are the initial and the boundary data as well as the case where the system is controlled by the switching times of the node condition. We present differentiability results for the considered problems in a quite general setting including an adjoint-based gradient representation of the reduced objective function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Ancona, G.M. Coclite, On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43(6), 2166–2190 (2005). (electronic)

    Google Scholar 

  2. F. Ancona, A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36(1), 290–312 (1998). (electronic)

    Google Scholar 

  3. M.K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1(2), 295–314 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Bardos, A.Y. le Roux, J.-C. Nédélec, First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  MATH  Google Scholar 

  5. S. Bianchini, On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discret. Contin. Dyn. Syst. 6(2), 329–350 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Bouchut, F. James, One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal. 32(7), 891–933 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Bressan, Hyperbolic Systems of Conservation Laws. Volume 20 of Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, Oxford, 2000). The one-dimensional Cauchy problem.

    Google Scholar 

  8. A. Bressan, G. Guerra, Shift-differentiability of the flow generated by a conservation law. Discret. Contin. Dynam. Syst. 3(1), 35–58 (1997)

    MATH  MathSciNet  Google Scholar 

  9. A. Bressan, A. Marson, A variational calculus for discontinuous solutions of systems of conservation laws. Commun. Partial Differ. Equ. 20(9–10), 1491–1552 (1995)

    MATH  MathSciNet  Google Scholar 

  10. G. Bretti, R. Natalini, B. Piccoli, Numerical approximations of a traffic flow model on networks. Netw. Heterog. Media 1(1), 57–84 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Castro, F. Palacios, E. Zuazua, An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks. Math. Models Methods Appl. Sci. 18(3), 369–416 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Cockburn, F. Coquel, P.G. LeFloch, Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32(3), 687–705 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. G.M. Coclite, M. Garavello, B. Piccoli, Traffic flow on a road network. SIAM J. Math. Anal. 36(6), 1862–1886 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. G.M. Coclite, K.H. Karlsen, Y.-S. Kwon, Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation. J. Funct. Anal. 257(12), 3823–3857 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. R.M. Colombo, A. Groli, On the optimization of the initial boundary value problem for a conservation law. J. Math. Anal. Appl. 291(1), 82–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. R.M. Colombo, G. Guerra, M. Herty, V. Schleper, Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48(3), 2032–2050 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. C.M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana Univ. Math. J. 26(6), 1097–1119 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Dubois, P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 71(1), 93–122 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Giles, S. Ulbrich, Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 1: linearized approximations and linearized output functionals. SIAM J. Numer. Anal. 48(3), 882–904 (2010)

    Google Scholar 

  20. M. Giles, S. Ulbrich, Convergence of linearized and adjoint approximations for discontinuous solutions of conservation laws. Part 2: adjoint approximations and extensions. SIAM J. Numer. Anal. 48(3), 905–921 (2010)

    Google Scholar 

  21. S. Göttlich, M. Herty, A. Klar, Modelling and optimization of supply chains on complex networks. Commun. Math. Sci. 4(2), 315–330 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Gugat, M. Herty, A. Klar, G. Leugering, Optimal control for traffic flow networks. J. Optim. Theory Appl. 126(3), 589–616 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Gugat, M. Herty, V. Schleper, Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34(7), 745–757 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. F.M. Hante, G. Leugering, T.I. Seidman, Modeling and analysis of modal switching in networked transport systems. Appl. Math. Optim. 59(2), 275–292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Holden, N.H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26(4), 999–1017 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. S.N. Kružkov, Quasilinear parabolic equations and systems with two independent variables. Trudy Sem. Petrovsk. 5, 217–272 (1979)

    Google Scholar 

  27. P. LeFloch, Explicit formula for scalar nonlinear conservation laws with boundary condition. Math. Methods Appl. Sci. 10(3), 265–287 (1988)

    Article  MathSciNet  Google Scholar 

  28. A.Y. le Roux, Étude du problème mixte pour une équation quasi-linéaire du premier ordre. C. R. Acad. Sci. Paris Sér. A-B 285(5), A351–A354 (1977)

    MathSciNet  Google Scholar 

  29. M.J. Lighthill, G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955)

    MATH  MathSciNet  Google Scholar 

  30. J. Málek, J. Nečas, M. Rokyta, M. R uužička, Weak and Measure-Valued Solutions to Evolutionary PDEs. Volume 13 of Applied Mathematics and Mathematical Computation (Chapman & Hall, London, 1996)

    Google Scholar 

  31. F. Otto, Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322(8), 729–734 (1996)

    MATH  Google Scholar 

  32. V. Perrollaz, Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(5), 879–915 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. E. Polak, Optimization. Volume 124 of Applied Mathematical Sciences (Springer, New York, 1997). Algorithms and consistent approximations

    Google Scholar 

  34. P.I. Richards, Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  35. S. Ulbrich, On the existence and approximation of solutions for the optimal control of nonlinear hyperbolic conservation laws, in Optimal Control of Partial Differential Equations (Chemnitz, 1998). Volume 133 of International Series of Numerical Mathematics (Birkhäuser, Basel, 1999), pp. 287–299

    Google Scholar 

  36. S. Ulbrich, Optimal control of nonlinear hyperbolic conservation laws with source terms. Habilitation, Zentrum Mathematik, Technische Universität München, 2001

    Google Scholar 

  37. S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41(3), 740–797 (2002). (electronic)

    Google Scholar 

  38. S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 48(3–4), 313–328 (2003). Optimization and control of distributed systems

    Google Scholar 

  39. A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the German Research Foundation (DFG) within the Priority Program 1253 “Optimization with Partial Differential Equations” under grant UL158/8-1. Moreover, we gratefully acknowledge discussions with T. I. Seidman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pfaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pfaff, S., Ulbrich, S., Leugering, G. (2014). Optimal Control of Nonlinear Hyperbolic Conservation Laws with Switching. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_8

Download citation

Publish with us

Policies and ethics