Skip to main content

Introduction to High-Resolution Upwind Schemes

  • Chapter
  • First Online:

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

The algorithms described in the two preceding chapters have been used successfully for the computation of many flow fields. However, in some contexts an additional degree of robustness is required. There are many flow problems, especially those involving complex physics, where positivity and monotonicity preservation is critical. For example, in a hypersonic flow, where the Mach number is much greater than unity, strong shock waves arise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is a necessary property of a conservative scheme.

  2. 2.

    Henceforth we drop the bars denoting cell average quantities for convenience.

  3. 3.

    For example, Goodman and Leveque [19] showed that TVD schemes for scalar conservation laws in two dimensions can be no better than first-order accurate.

References

  1. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with applications to finite difference methods. J. Comput. Phys. 40, 263–293  (1981)

    Google Scholar 

  2. Van Leer, B., Flux vector splitting for the Euler equations. In: Proceedings of the 8th international conference on numerical methods in fluid dynamics, Springer-Verlag, Berlin, (1982)

    Google Scholar 

  3. Roe, P.L.: Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372  (1981)

    Google Scholar 

  4. Godunov, S.K.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Matematicheskii Sbornik 47, 271–306  (1959)

    Google Scholar 

  5. Hirsch, C.: Numerical Computation of Internal and External Flows, vol. 2. Wiley, Chichester (1990)

    Google Scholar 

  6. Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of Computational Fluid Dynamics. Springer, Berlin (2001)

    Google Scholar 

  7. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269  (1983)

    Google Scholar 

  8. Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Google Scholar 

  9. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973)

    Google Scholar 

  10. Harten, A., Hyman, J.M., Lax, P.D.: On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29, 297–322  (1976)

    Google Scholar 

  11. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237  (1960)

    Google Scholar 

  12. Harten, A.: High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49, 357–393  (1983).

    Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112  (2001)

    Google Scholar 

  14. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer. Anal. 21, 995–1011  (1984)

    Google Scholar 

  15. Roe, P.L.: Some contributions to the modelling of discontinuous flows. In: Lectures in Applied Mathematics. vol. 22, pp. 163–193.  SIAM, Philadelphia (1985)

    Google Scholar 

  16. Van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370  (1974)

    Google Scholar 

  17. Van Albada, G.D., Van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84  (1982)

    Google Scholar 

  18. Spekreijse, S.: Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws. Math. Comput. 49, 135–155  (1987)

    Google Scholar 

  19. Goodman, J.B., Leveque, R.J.: On the accuracy of stable schemes for 2D conservation laws. Math. Comput. 45, 15–21  (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Pulliam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pulliam, T.H., Zingg, D.W. (2014). Introduction to High-Resolution Upwind Schemes. In: Fundamental Algorithms in Computational Fluid Dynamics. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-05053-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05053-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05052-2

  • Online ISBN: 978-3-319-05053-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics