Skip to main content

Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis

  • Research Paper
  • Conference paper
  • First Online:
Nanotechnology for Sustainable Development

Abstract

Intermolecular energy decomposition analysis (EDA) is reported for the binding of CO2 with zeolitic imidazole frameworks (ZIF) to provide a molecular level interpretation of the recent capacity and selectivity measurements of several ZIFs and to suggest a theoretical guideline to improve their performance further, using 1 nm size of organic linker fragment of the ZIFs as a target molecule. The EDA suggests that the local electronic interaction of CO2 and the substituent groups, mainly frozen density and polarization interactions with little charge transfer, is the primary binding interaction, but the electron correlation effects can be equally or more important depending on the binding geometry and functional groups. The present correlated calculations identify the preferred ZIF binding sites for various gases including CO2 to be mostly near the benzene substituent groups rather than the plane of imidazole rings. We predict that the NH2-substituted ZIF would have an enhanced capacity of CO2 as compared to the NO2-substituted ZIF that was recently synthesized and reported to be one of the materials with the best capacity results along with high gas selectivity. The present calculations may imply that the local functionality of the linking organics, rather than detailed framework structures, may be of primary importance in designing certain high capacity MOF or ZIF materials.

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babarao R, Jiang J (2009) Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: a molecular simulation study. J Am Chem Soc 131:11417–11425

    Article  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–942

    Article  Google Scholar 

  • Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877

    Article  Google Scholar 

  • Brant JA, Liu Y, Sava DF, Beauchamp D, Eddaoudi M (2006) Single-metal-ion-based molecular building blocks (MBBs) approach to the design and synthesis of metal-organic assemblies. J Mol Struct 796:160–164

    Article  Google Scholar 

  • Figgen D, Rauhut G, Dolg M, Stoll H (2005) Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data. Chem Phys 311:227–244

    Article  Google Scholar 

  • Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  Google Scholar 

  • Grimme S (2003) Spin-component-scaled Møller–Plesset (SCS-MP) perturbation theory: a generalization of the MP approach with improved properties. J Chem Phys 118:9095

    Google Scholar 

  • Hayashi H, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506

    Article  Google Scholar 

  • Hill JG, Platts JA (2008) Auxiliary basis sets for density fitting-MP2 calculations: nonrelativistic triple-ζ all-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 128:044104

    Article  Google Scholar 

  • Jung Y, Lochan R, Dutoi T, Head-Grodon M (2004) Scaled opposite spin second order Møller-Plesset correlation energy: an economical electronic structure method. J Chem Phys 121:9793

    Google Scholar 

  • Jung Y, Head-Gordon M (2006) A fast correlated electronic structure method for computing interaction energies of van der Waals complexes applied to the fullerene-porphyrin dimer. Phys Chem Chem Phys 8:2831

    Google Scholar 

  • Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J Phys Chem A 111:8753–8765

    Article  Google Scholar 

  • Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Edn 43:2334–2375

    Article  Google Scholar 

  • Liu B, Smit B (2010) Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. J Phys Chem C 114:8515–8522

    Article  Google Scholar 

  • Liu D, Zheng C, Yang Q, Zhong C (2009) Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: a molecular simulation study. J Phys Chem C 113:5004–5009

    Article  Google Scholar 

  • Lochan R, Jung Y, Head-Gordon M (2005) Scaled opposite spin second order Møllet-Plesset theory with improved physical description of long-range dispersion interactions. J Phys Chem A 109:7598

    Google Scholar 

  • Morris W, Leung B, Furukawa H, Yaghi OK, He N, Hayashi H, Houndonougbo Y, Asta M, Laird BB, Yaghi OM (2010) A combined experimental–computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. J Am Chem Soc 132:11006–11008

    Article  Google Scholar 

  • Mueller T, Ceder G (2005) A density functional theory study of hydrogen adsorption in MOF-5. J Phys Chem B 109:17974–17983

    Article  Google Scholar 

  • Mulder FM, Dingermans TJ, Wagemaker M, Kearley GJ (2005) Modelling of hydrogen adsorption in the metal organic framework MOF5. Chem Phys 317:113–118

    Article  Google Scholar 

  • Negri F, Saendig N (2007) Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials. Theor Chem Acc 118:149–163

    Article  Google Scholar 

  • Park J, Kim H, Han SS, Jung Y (2012) Tuning metal–organic frameworks with open-metal sites and its origin for enhancing CO2 affinity by metal substitution. J Phys Chem Lett 3:826

    Google Scholar 

  • Park KS, Ni Z, Côté AP, Choi JY, Huang RD, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191

    Article  Google Scholar 

  • Pérez-Pellitero J, Amrouch H, Siperstein FR, Pirngruber G, Nieto-Draghi C, Chaplais G, Simion-Masseron A, Bazer-Bachi D, Peralta D, Bats N (2010) Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chem Eur J 16:1560–1571

    Article  Google Scholar 

  • Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–284

    Article  Google Scholar 

  • Rallapalli P, Prasanth KP, Patil D, Somani RS, Jasra RV, Bajaj HC (2010) An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate, MIL-53(Al). J Porous Mater 17:523–528

    Article  Google Scholar 

  • Rankin RB, Liu J, Kulkarni AD, Johnson JK (2009) Adsorption and diffusion of light gases in ZIF-68 and ZIF-70: a simulation study. J Phys Chem C 113:16906–16914

    Article  Google Scholar 

  • Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Sagara T, Klassen J, Ganz E (2004) Computational study of hydrogen binding by metal-organic framework-5. J Chem Phys 121:12543

    Article  Google Scholar 

  • Samanta A, Furuta T, Li J (2006) Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J Chem Phys 125:084714

    Article  Google Scholar 

  • Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Van Voorhis T, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu CP, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191

    Article  Google Scholar 

  • Torrisi A, Mellot-Draznieks C, Bell RG (2009) Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. J Chem Phys 130:194703

    Article  Google Scholar 

  • Torrisi A, Mellot-Draznieks C, Bell RG (2010) Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents. J Chem Phys 132:044705

    Article  Google Scholar 

  • Vogiatzis KD, Mavrandonakis A, Klopper W, Froudakis GE (2009) Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10:374–383

    Article  Google Scholar 

  • Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–212

    Article  Google Scholar 

  • Wu T, Zhang J, Zhou C, Wang L, Bu X (2009a) Zeolite RHO-type net with the lightest elements. J Am Chem Soc 131:6111–6113

    Article  Google Scholar 

  • Wu Q, Ayers PW, Zhang Y (2009b) Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. J Chem Phys 131:164112

    Article  Google Scholar 

  • Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679

    Article  Google Scholar 

  • Yousaf KE, Peterson KA (2009) Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets. Chem Phys Lett 476:303–307

    Article  Google Scholar 

  • Zulfigar S, Faradas F, Park J, Stucky GD, Jung Y, Atilhan M, Yavuz CT (2011) Amidoximes: promising candidates for CO2 capture. Energy Env Sci 4:4528

    Google Scholar 

Download references

Acknowledgments

YJ acknowledges the support of Basic Science Research Program (2010-0023018) and WCU (NRF R-31-2008-000-10055-0) program funded by the Korea Ministry of Education, Science and Technology. YSL is supported by grants (2010-0016243, 2010-0001632) funded by NRF and the EEWS program of KAIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousung Jung .

Editor information

Editors and Affiliations

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 262 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Park, J.Y., Lee, Y.S., Jung, Y. (2012). Local intermolecular interactions for selective CO2 capture by zeolitic imidazole frameworks: energy decomposition analysis. In: Diallo, M.S., Fromer, N.A., Jhon, M.S. (eds) Nanotechnology for Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-05041-6_22

Download citation

Publish with us

Policies and ethics