Skip to main content

Preparation of proton conducting membranes containing bifunctional titania nanoparticles

  • Research Paper
  • Conference paper
  • First Online:
Book cover Nanotechnology for Sustainable Development
  • 2785 Accesses

Abstract

Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10–15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA–TS–(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA–TS–(NMPA)3 as 0.003 S cm−1 at 150 °C.

This article is part of the Topical Collection on Nanotechnology for Sustainable Development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar O, Sen U, Bozkurt A (2009) Ata proton conducting membranes based on poly(2,5-benzimidazole) (ABPBI)–poly(vinylphosphonic acid) blends for fuel cells. Int J Hydrogen Energy 34:2724

    Article  Google Scholar 

  • Arata K, Hino M (1990) Mater Chem Phys 26:213–237

    Google Scholar 

  • Aslan A, Bozkurt A (2012) Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/sulfated nano-titania. J Power Sources 217:158–163

    Article  Google Scholar 

  • Aslan A, Bozkurt A (2013) An investigation of proton conductivity of nanocomposite membranes based on sulfated nano-titania and polymer. Solid State Ionics 239:21–27

    Article  Google Scholar 

  • Aslan A, Ünal Ş, Ayhan B (2009) Preparation, properties, and characterization of polymer electrolyte membranes based on poly(1-vinyl-1,2,4 triazole) and poly(styrene sulfonic acid). J Electrochem Soc 156:B1112–B1116

    Article  Google Scholar 

  • Babir F, Gomez T (1996) Efficiency and economics of proton exchange membrane (PEM) fuel cells. Int J Hydrogen Energy 21:891–901

    Article  Google Scholar 

  • Baglio V, Aricò AS, Blasi AD, Antonucci V, Antonucci PL, Licoccia S (2005) Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochim Acta 50:1241–1246

    Article  Google Scholar 

  • Boroglu SM, Celik SU, Bozkurt A, Ismail B (2011) The synthesis and characterization of anhydrous proton conducting membranes based on sulfonated poly(vinyl alcohol) and imidazole. J Memb Sci 375:157–164

    Article  Google Scholar 

  • Carbone A, Sacca A, Gatto I, Pedicini R, Passalacqua E (2008) Investigation on composite S-PEEK/H-BETA MEAs for medium temperature PEFC. Int J Hydrogen Energy 33:3153–3158

    Article  Google Scholar 

  • Celik SU, Akbey U, Graf R, Bozkurt A, Spiess HW (2008) Anhydrous proton conducting properties of copolymer membranes: a combined study with MAS NMR. Phys Chem Chem Phys 10:6058–6066

    Article  Google Scholar 

  • Celik SÜ, Bozkurt A, Hosseini SS (2012) Alternatives toward proton conductive anhydrous membranes for fuel cells: heterocyclic protogenic solvents comprising polymer electrolytes. Prog Polym Sci 37:1265–1291

    Article  Google Scholar 

  • Chen SY, Han CC, Tsai CH, Huang J, Chen YW (2007) Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J Power Sources 171:363–372

    Article  Google Scholar 

  • Daniliuc L, Kesel CD, David C (1992) Intermolecular interactions in blends of poly(vinyl alcohol) with poly(acrylic acid) FTIR and DSC studies. Eur Polym J 28:1365–1371

    Article  Google Scholar 

  • Gasa JV, Boob S, Weiss RA, Shaw MT (2006) Proton-exchange membranes composed of slightly sulfonated poly(ether ketone ketone) and highly sulfonated crosslinked polystyrene particles. J Memb Sci 269:177–186

    Article  Google Scholar 

  • Godovsky DY (2000) Applications of polymer-nanocomposites. Adv Polym Sci 153:165–205

    Google Scholar 

  • Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry Monographs, Cambridge

    Google Scholar 

  • Ione C, Daniel L, Angel A, Carmen M (2001) Dynamic mechanical and dielectrical properties of poly(vinyl alcohol) and poly(vinyl alcohol)-based nanocomposites. J Polym Sci Part B Polym Phys 39:1968–1975

    Article  Google Scholar 

  • Jiang XC, Herricks T, Xia YN (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:1205–1209

    Article  Google Scholar 

  • Kumar RV, Elgamiel R, Diamant Y, Gedanken A (2001) Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17:1406–1410

    Article  Google Scholar 

  • Lin H, Watanabe Y, Kimura M (2003) Preparation of magnetic poly (vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix. J Appl Polym Sci 87:1239–1247

    Article  Google Scholar 

  • Ma TY, Zhang XJ, Shao GS, Cao JL, Yuan ZY (2008) Ordered macroporous titanium phosphonate materials: synthesis, photocatalytic activity, and heavy metal ion adsorption. J Phys Chem C 112:3090–3096

    Google Scholar 

  • Munakata H, Chiba H, Kanamura K (2005) Enhancement on proton conductivity of inorganic–organic composite electrolyte membrane by addition of sulfonic acid group. Solid State Ionics 176:2445

    Article  Google Scholar 

  • Nakane K, Yamashita T, Iwakuka K, Suzuki F (1999) Thermal properties and morphology of a poly(vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique. J Appl Polym Sci 74:133

    Article  Google Scholar 

  • Navarrete J, Lopez T, Gomez R (1996) Surface acidity of sulfated TiO2−SiO2 Sol-Gels. Langmuir 12:4385–4390

    Google Scholar 

  • Nogami M, Matsushita H, Goto Y, Kasuga T (2000) A sol–gel-derived glass as a fuel cell electrolyte. Adv Mater 12:1370–1372

    Article  Google Scholar 

  • Park HB, Shin HS, Lee YM, Rhim JW (2005) Annealing effect of sulfonated polysulfone ionomer membranes on proton conductivity and methanol transport. J Memb Sci 247:103

    Article  Google Scholar 

  • Peng Z, Kong LX, Li SD (2005) Thermal properties and morphology of a poly(vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique. J Appl Polym Sci 96:1436–1442

    Article  Google Scholar 

  • Qian XF, Yin J, Huang JC, Yang YF, Guo XX, Zhu ZK (2001) The preparation and characterization of PVA/Ag2S nanocomposite. Mater Chem Phys 68:95–97

    Article  Google Scholar 

  • Sakai T, Kajitani S, Kim S, Hamagami J, Oda H, Matsuka M, Matsumoto H, Ishihara T (2010) Proton conduction properties of hydrous sulfated nano-titania synthesized by hydrolysis of titanyl sulfate. Solid State Ionics 181:1746–1749

    Article  Google Scholar 

  • Salgado JR (2007) Study of basic biopolymer as proton membrane for fuel cell systems. Electrochim Acta 52:3766–3778

    Article  Google Scholar 

  • Schaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941

    Article  Google Scholar 

  • Smitha B, Sridhar S, Khan AA (2004) Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37:2233–2239

    Article  Google Scholar 

  • Strawhecker KE, Manias E (2000) Structure and properties of poly(vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12:2943–2949

    Article  Google Scholar 

  • Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Goyal A, More KL (2007) Enhancement of dielectric strength in nanocomposites. Nanotechnology 18:32–39

    Google Scholar 

  • Venckatesh R, Balachandaran K, Sivaraj R (2012) Synthesis and characterization of nano TiO2–SiO2: PVA composite-a novel route. Int Nano Lett 2:15–20

    Article  Google Scholar 

  • Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837

    Article  Google Scholar 

  • Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. J Memb Sci 288:51–60

    Article  Google Scholar 

  • Yang CC, Lin SJ (2002) Preparation of composite alkaline polymer electrolyte. Mater Lett 57:873–881

    Article  Google Scholar 

  • Yu YH, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer 44:3553–3560

    Article  Google Scholar 

  • Zhou WW, Wang Y, Xiao L, Jiang Z (2010) Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. J Power Sources 195:4104–4113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Aslan .

Editor information

Editors and Affiliations

Additional information

Special Issue Editors: Mamadou Diallo, Neil Fromer, Myung S. Jhon

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Aslan, A., Bozkurt, A. (2012). Preparation of proton conducting membranes containing bifunctional titania nanoparticles. In: Diallo, M.S., Fromer, N.A., Jhon, M.S. (eds) Nanotechnology for Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-05041-6_19

Download citation

Publish with us

Policies and ethics