Skip to main content

Microalgal Feedstock for Bioenergy: Opportunities and Challenges

  • Chapter
  • First Online:

Abstract

The utilization of algal feedstock for bioenergy can be considered as one of the greatest challenges for biosystems engineering in the near future. Some species of microalgae show high potential for oil accumulation and further utilization of its biomass for biogas generation, pyrolysis, ethanol production, and even as fertilizer. Microalgae can utilize CO2 as carbon source and can also be grown on nonagricultural environments, such as wastewater facilities, industrial effluents, freshwater, and marine water habitats. The vast research field on microalgae engineering is due to the facts that it can be a source of energy and act as an air and water pollutants removal. There have been considerable advances in engineering its growth, in bioreactor designs, and on lipid accumulation due to chemical, biochemical, and genetic studies. Despite that, there are still some fundamental processing aspects that are considered challenges, either economical, ecological, or technical, such as biomass harvesting and the competition with the higher value products produced from algae, as proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acién Fernández F, García Camacho F, Chisti Y (1999) Photobioreactors: Light regime, mass transfer, and scaleup. Prog Ind Microbiol 35:231–247

    Google Scholar 

  • Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27(11):1195–1208

    CAS  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3(2):117–129

    CAS  Google Scholar 

  • Anklam E, Berg H, Mathiasson L, Sharman M, Ulberth F (1998) Supercritical fluid extraction (SFE) in food analysis: A review. Food Addit Contam 15(6):729–750

    PubMed  CAS  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Becker W (2004) 18 microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report

    Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503

    PubMed  CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–Response surface methodology analysis. Energy Convers Manag 50(2):262–267

    CAS  Google Scholar 

  • Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, NY, 873p

    Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15(2–3):143–153

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    CAS  Google Scholar 

  • Bridgwater A (2008) Progress in thermochemical biomass conversion. Wiley. com, New York

    Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    CAS  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99(17):7941–7953

    PubMed  CAS  Google Scholar 

  • Cartens M, Grima EM, Medina AR, Giménez AG, Gonzalez JI (1996) Eicosapentaenoic acid (20: 5n–3) from the marine microalga Phaeodactylum tricornutum. J Ame Oil Chem Soc 73(8):1025–1031

    CAS  Google Scholar 

  • Chen C, Yeh K, Aisyah R, Lee D, Chang J (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    PubMed  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y (2010) Review of biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2(4):1–30

    Google Scholar 

  • Cheung K, Chu L, Wong M (1993) Toxic effect of landfill leachate on microalgae. Water Air Soil Pollut 69(3–4):337–349

    CAS  Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1(2):233–235

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    PubMed  CAS  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzym Microb Technol 8(4):194–204

    CAS  Google Scholar 

  • Chojnacka K (2004) Kinetic and stoichiometric relationships of the energy and carbonmetabolism in the culture of microalgae. Biotechnology 3:21–34

    Google Scholar 

  • Clark JH, Deswarte F (2011) Introduction to chemicals from biomass. Wiley. com, New York

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    PubMed  CAS  Google Scholar 

  • Demirbas A (2009) Hydrogen from mosses and algae via pyrolysis and steam gasification. Energy Sour Part A Recovery Util Environ Eff 32(2):172–179

    Google Scholar 

  • Demirbas A (2008) Biodiesel. Springer, Berlin

    Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52(1):163–170

    Google Scholar 

  • Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energy Sour Part A 28(10):933–940

    Google Scholar 

  • Deng M, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528

    PubMed Central  PubMed  CAS  Google Scholar 

  • Diaz GC, Leite GT, Cruz RY, Aranda DAG, Arceo AA, Furtado NC, Taft CA (2013). Biodiesel by hydroesterification of oil from the microalgae Scenedesmus dimorphus. Lett Org Chem 10(4):263–8

    Google Scholar 

  • Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama S (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73(12):1855–1857

    CAS  Google Scholar 

  • Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C, Lin X, Liu Y, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102(7):4890–4896

    PubMed  CAS  Google Scholar 

  • Fabregas J, Dominguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga haematococcus pluvialis. Appl Microbiol Biotechnol 53(5):530–535

    PubMed  CAS  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    PubMed  CAS  Google Scholar 

  • Fargione JE, Plevin RJ, Hill JD (2010) The ecological impact of biofuels. Annu Rev Ecol Evol Syst 41:351–377

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    PubMed  CAS  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18(12):506–511

    PubMed  CAS  Google Scholar 

  • Ginzburg B (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3(2):249–252

    CAS  Google Scholar 

  • Goldemberg J, Coelho ST, Nastari PM, Lucon O (2004) Ethanol learning curve—the Brazilian experience. Biomass Bioenergy 26(3):301–304

    Google Scholar 

  • Golueke CG, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Pollut Control Fed 37(4):471–498

    Google Scholar 

  • Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: A review. Renew Sustain Energy Rev 12(2):504–517

    CAS  Google Scholar 

  • Grima EM, Medina AR, Giménez AG, Pérez JS, Camacho FG, Sánchez JG (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. JAm Oil Chem Soc 71(9):955–959

    Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford, pp 95–115

    Google Scholar 

  • Gudin C and Thepenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–100

    Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    PubMed  CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35(5):2245–2253

    CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162(7):1978–1995

    PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103(30):11206–11210

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci 106(6):2077–2082

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22(2):137–142

    CAS  Google Scholar 

  • Hoekman SK (2009) Biofuels in the US–challenges and opportunities. Renew Energy 34(1):14–22

    CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden, Paul J, Dai X, Maskell K, Johnson C (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsieh C, Wu W (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926

    PubMed  CAS  Google Scholar 

  • Hu B, Ruan R, Zhang J, Zhang W (2013) Microalgae culture and harvest. W.O. patent 2013055887 A1

    Google Scholar 

  • Huang C, Zong M, Wu H, Liu Q (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538

    PubMed  CAS  Google Scholar 

  • Illman A, Scragg A, Shales S (2000) Increase in chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27(8):631–635

    CAS  Google Scholar 

  • John RP, Anisha G, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour Technol 102(1):186–193

    PubMed  CAS  Google Scholar 

  • Johnson EA, Liu Z, Salmon E, Hatcher PG (2013) One-step conversion of algal biomass to biodiesel with formation of an algal char as potential fertilizer. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, 695p

    Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24(9):5235–5243

    CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    PubMed  CAS  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771

    PubMed  CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049

    PubMed  CAS  Google Scholar 

  • Lin L, Chan G, Jiang B, Lan C (2007) Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manage 27(10):1376–1382

    CAS  Google Scholar 

  • Linder MB (2009) Hydrophobins: proteins that self assemble at interfaces. Curr Opin Colloid Interface Sci 14(5):356–363

    CAS  Google Scholar 

  • Lobban CS (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44(14):5353–5363

    CAS  Google Scholar 

  • Lourenço SO (2006) Cultivo de microalgas marinhas: Princípios e aplicações. RiMa Rio de Janeiro

    Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54

    PubMed  CAS  Google Scholar 

  • Medina AR, Grima EM, Giménez AG, Gonzalez M (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16(3):517–580

    CAS  Google Scholar 

  • Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit Rev Biotechnol 25(3):113–152

    PubMed  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001) Characterization and optimization of ni and cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 18(1):1–13

    Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    PubMed  CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93

    PubMed  CAS  Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzym Microb Technol 36(2):294–300

    CAS  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738

    CAS  Google Scholar 

  • Moore A (2008) Biofuels are dead: long live biofuels (?)–part one. New Biotechnol 25(1):6–12

    CAS  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    PubMed  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    PubMed  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24(1):355–361

    Google Scholar 

  • Patil PD, Gude VG, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102(1):118–122

    PubMed  CAS  Google Scholar 

  • Patil V, Tran K, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195

    PubMed Central  PubMed  CAS  Google Scholar 

  • Petrusevski B, Bolier G, Van Breemen A, Alaerts G (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29(5):1419–1424

    CAS  Google Scholar 

  • Pousa GP, Santos AL, Suarez PA (2007) History and policy of biodiesel in Brazil. Energy Policy 35(11):5393–5398

    Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42(16):5958–5962

    PubMed  CAS  Google Scholar 

  • Qiul J, Fan X, Zou H (2011) Development of biodiesel from inedible feedstock through various production processes. Rev Chem Technol Fuels Oils 47(2):102–111

    CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic Press, London

    Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technology 20(7):155–160

    Google Scholar 

  • Reyes Y, Chenard G, Aranda D, Mesquita C, Fortes M, João R, Bacellar L (2012) Biodiesel production by hydroesterification of microalgal biomass using heterogeneous catalyst. Nat Sci 4(10):778–783

    CAS  Google Scholar 

  • Ribeiro SK, Younes-Ibrahim PS (2001) Global warming and transport in brazil-ethanol alternative. Int J Veh Des 27(1):118–128

    Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19(5):430–436

    PubMed  CAS  Google Scholar 

  • Rubio J, Souza M, Smith R (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15(3):139–155

    CAS  Google Scholar 

  • Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16(4):227–235

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Shuping Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35(12):5406–5411

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    PubMed  CAS  Google Scholar 

  • Silva HJ, Cortifas T, Ertola RJ (1987) Effect of hydrodynamic stress on dunaliella growth. J Chem Technol Biotechnol 40(1):41–49

    Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555

    CAS  Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    PubMed  CAS  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour Technol 83(1):1–11

    PubMed  CAS  Google Scholar 

  • Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54(1):112–117

    PubMed  CAS  Google Scholar 

  • Tampier M, Consulting E, Bibeau E (2009) Microalgae technologies and processes for Biofuels/Bioenergy production in British Columbia. Current Technology, Suitability & Barriers to Implementation. British Columbia Innovation Council

    Google Scholar 

  • Tang H, Abunasser N, Garcia M, Chen M, Simon Ng K, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88(10):3324–3330

    CAS  Google Scholar 

  • Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microb Technol 7(10):474–487

    Google Scholar 

  • Ting Y, Teo W, Soh C (1995) Gold uptake by Chlorella vulgaris. J Appl Phycol 7(1):97–100

    CAS  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) “Process for the Production of Ethanol from Microalgae”, U.S. patent 5578472

    Google Scholar 

  • Vergara-Fernández A, Vargas G, Alarcón N, Velasco A (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32(4):338–344

    Google Scholar 

  • Volkman J, Jeffrey S, Nichols P, Rogers G, Garland C (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128(3):219–240

    CAS  Google Scholar 

  • Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R (2009) Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. J Anal Appl Pyrol 86(1):161–167

    CAS  Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628

    PubMed  CAS  Google Scholar 

  • Wu X, Merchuk JC (2004) Simulation of algae growth in a bench scale internal loop airlift reactor. Chem Eng Sci 59(14):2899–2912

    CAS  Google Scholar 

  • Wu X, Merchuk JC (2002) Simulation of algae growth in a bench-scale bubble column reactor. Biotechnol Bioeng 80(2):156–168

    PubMed  CAS  Google Scholar 

  • Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: Cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4(1):1–10

    Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158

    PubMed  CAS  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535

    PubMed  CAS  Google Scholar 

  • Zou S, Wu Y, Yang M, Li C, Tong J (2009) Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuels 23(7):3753–3758

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Messias Borges Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reis, C.E.R. et al. (2014). Microalgal Feedstock for Bioenergy: Opportunities and Challenges. In: da Silva, S., Chandel, A. (eds) Biofuels in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-05020-1_17

Download citation

Publish with us

Policies and ethics