Skip to main content

Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production

  • Chapter
  • First Online:
Biofuels in Brazil

Abstract

Sugarcane juice-derived ethanol (1G ethanol) has been the major renewable energy source in Brazil after the inception of National Alcohol Program in 1970. The remaining part, after the processing of sugarcane and extraction of juice (sugarcane bagasse-SB and straw-SS), are the promising sugar feedstock for cellulosic ethanol (2G ethanol) due to their abundant availability round the year and high energy content. However, sugar recovery from lignocellulosic biomass is not easy and needs intensive processing. Pretreatment to overcome the recalcitrance of these feedstocks and sugar recovery constitute almost 30 % cost of 2G ethanol production. Several pretreatment methods have been studied recently aiming to either lignin removal or hemicellulose from SB/SS for the subsequent enzymatic hydrolysis for fermentable sugar production. However, steam explosion and dilute sulfuric acid have been emerged out as two successful options for the pretreatment of SB/SS. Pilot level studies at our institute (Laboratório Nacional de Ciência e Tecnologia do Bioetanol—CTBE, Campinas, Brazil), for the pretreatment of SB/SS considering steam explosion and dilute acid pretreatment, have shown the promising results. Both the pretreatment strategies are scalable and reproducible at the commercial level. This chapter deals with the experiments made on SB/SS for the steam explosion and dilute acid hydrolysis and the sugar recovery after enzymatic hydrolysis. Furthermore, process configurations for saccharification of pretreated biomass and the conversion of released sugars into ethanol have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Bansal P, Vowell BJ, Hall M et al (2012) Elucidation of cellulose accessibility, hydrolysability and reactivity as the major limitations in the enzymatic hydrolysis of cellulose. Bioresour Technol 107:243–250

    Article  PubMed  CAS  Google Scholar 

  • Caminal G, López-Santín J, Solà C (1985) Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol Bioeng 27:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Canilha L, Santos VTO, Rocha GJM, Silva JBA, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2012) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475. doi:10.1007/s10295-010-0931-2

    Article  Google Scholar 

  • Chandel AK, Chandrasekhar G, Narasu ML, Rao LV (2010) Simultaneous saccharification and fermentation (SSF) of aqueous ammonia pretreated Saccharum spontaneum (wild sugarcane) for second generation ethanol production. Sugar Tech 12:125–132

    Article  CAS  Google Scholar 

  • Chandel AK, Chandrasekhar G, Radhika K, Ravinder R, Ravindra P (2011) Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol Mol Biol Rev 6:008–020

    CAS  Google Scholar 

  • Chandel AK, Narasu ML, Chandrasekhar G, Manikeyam A, Rao LV (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Antunes FFA, Arruda PV, Milessi TSS, Silva SS, Felipe MGA (2012a) Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: Sate-of-the-art. In: Silva SS, Chandel AK (eds) D-xylitol: fermentative production, application and commercialisation. Springer, Heidelberg, pp 39–61

    Chapter  Google Scholar 

  • Chandel AK, Silva SS, Carvalho W, Singh OV (2012b) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  CAS  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84(86):5–37

    Article  PubMed  Google Scholar 

  • Chen Y, Stipanovic AJ, Winter WT et al (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

  • Coyle W (2010) Next-generation biofuels: near-term challenges and implications for agriculture. In: Economic Research Service, USDA Outlook Report No. Bio-01-01 Washington

    Google Scholar 

  • Díaz MJ, Cara C, Ruiz E et al (2011) Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks. Fuel 90(11):3225–3229

    Article  Google Scholar 

  • Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84(86):181–196

    Article  PubMed  Google Scholar 

  • Fengel D, Wegener G (1989) Wood chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 14, 27–28

    Google Scholar 

  • Focher B, Marzetti A, Crescenzi V (1988) Steam explosion techniques—fundamentals and industrial applications. Gordon and Breach Science Publishers, Philadelphia, p 411

    Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  PubMed  CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202

    Article  CAS  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol. Biores Technol 101:4775–4800

    Article  Google Scholar 

  • Goyal G, Tsai S-L, Madan B, da Silva NA, Chen W (2011) Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10:89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo L, Zhang J, Hu F, Dy Ryu D, Bao J (2013) Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Appl Biochem Biotechnol 169:1895–1909

    Article  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Pamment N (2004) Microbial pentose metabolism. Appl Biochem Biotech 113–16:1207–1209

    Article  Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  PubMed  CAS  Google Scholar 

  • Hoyer K, Galbe M, Zacchi G (2010) Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol Biofuels 3:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5(4):1043–1066

    Article  CAS  Google Scholar 

  • Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis, “Cellulose enzymatic hydrolysis”. BioResources 6(3):2818–2835

    CAS  Google Scholar 

  • Iranmahbooba J, Nadima F, Monemi S (2002) Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy 22(5):401–404

    Article  Google Scholar 

  • Isola J (2013) Cellulosic ethanol heads for cost competitiveness by 2016. In: Bloomberg energy finance. http://about.bnef.com/press-releases/cellulosic-ethanol-heads-for-cost-competitiveness-by-2016/. Accessed 20 July 2013

  • Jacquet N, Vanderghema C, Bleckerb C et al (2012) Improvement of the cellulose hydrolysis yields and hydrolysate concentration by management of enzymes and substrate input. Cerevisia 27(3):82–87

    Article  Google Scholar 

  • Jalak J, Väljamäe P (2010) Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 106(6):871–883

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    PubMed  CAS  Google Scholar 

  • Jin M, Gunawan C, Balan V, Dale BE (2012) Consolidated bioprocessing (CBP) of AFEXTM-pretreated corn stover for ethanol production using Clostridium phytofermentans at a high solids loading. Biotechnol Bioeng 109:1929–1936

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Gunawan C, Balan V, Yu X, Dale BE (2013) Continuous SSCF of AFEX™ pretreated corn stover for enhanced ethanol productivity using commercial enzymes and Saccharomyces cerevisiae 424A (LNH-ST). Biotechnol Bioeng 110:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101:8171–8188

    Article  PubMed  CAS  Google Scholar 

  • Joshi B, Bhatt MR, Sharma D et al (2011) Lignocellulosic ethanol production: Current practices and recent developments 2. Biotechnol Mol Biol Rev 6(8):172–182

    CAS  Google Scholar 

  • Ko CH, Chiu PC, Yang CL, Chang KH (2008) Xylitol conversion by fermentation using five yeast strains and polyelectrolyte assisted ultrafiltration. Biotechnol Lett 30:81–86

    Article  PubMed  CAS  Google Scholar 

  • Kooa B, Mina B, Gwaka K et al (2012) Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass Bioenergy 42:24–32

    Article  Google Scholar 

  • Krishnan C, Sousa LC, Jin M et al (2010) Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Biotechnol Bioeng 107:441–450

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100(18):4193–4202

    Article  PubMed  CAS  Google Scholar 

  • Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286(1):166–177

    Article  Google Scholar 

  • Kwon YJ, Wang F, Liu CZ (2011) Deep-bed solid state fermentation of sweet sorghum stalks to ethanol by thermotolerant Issatchenkia orientalis IPE 100. Bioresour Technol 102:11262–11265

    Article  PubMed  CAS  Google Scholar 

  • Li H-Q, Li C-L, Sang T, Xu J (2013) Pretreatment on Miscanthus lutarioriparious by liquid hot water for efficient ethanol production. Biotechnol Biofuels 6:76

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin TH, Huang CF, Guo GL, Hwang WS, Huang SL (2012) Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour Technol 116:314–319

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Hong J, Bevan DR, Zhang YHP (2009) Fast identification of thermostable β-glucosidase mutants on cellobiose by a novel combinatorial selection/screening approach. Biotechnol Bioeng 103:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416

    Article  CAS  Google Scholar 

  • Liua H, Fua S, Zhub JY et al (2009) Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microbial Technol 45:274–281

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Article  PubMed  CAS  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  PubMed  CAS  Google Scholar 

  • Martín C, Galbe M, Nilvebrant NO, Jönsson LJ (2002) Comparison of the fermentability of enzymatic hydrolysates of sugarcane bagasse pretreated by steam explosion using different impregnating agents. Appl Biochem Biotechnol 98(100):699–716

    Article  PubMed  Google Scholar 

  • Martín C, Marcet M, Thomsen AB (2008) Comparison of wet oxidation and steam explosion as pretreatment methods for bioethanol production from sugarcane bagasse. Bioresources 3:670–683

    Google Scholar 

  • Monney CA, Mansfield SH, Touhy MG, Saddler JN (1998) The effect of initial pore size and lignin content on the enzymatic hydrolysis of softwood. Biores Technol 64:113–119

    Article  Google Scholar 

  • Moon S-K, Kim SW, Choi G-W (2012) Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. J Biotechnol 157:584–589

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2, pp 897–907. ISBN: 978-84-614-6195-0

    Google Scholar 

  • Mussatto SI, Fernandes M, Milagres AMF et al (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microbial Technol 43:124–129

    Article  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97:107–116

    Article  PubMed  CAS  Google Scholar 

  • Novozymes (2010) Genencor unveil new enzymes for cellulosic ethanol. http://sustainableBusiness.com. Accessed 17 June 2013

  • NREL (2012): Ethanol production process engineering analysis. (http://www.nrel.gov/docs/fy11osti/47764.pdf. Accessed 16 July 2013

  • Ohgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863–869

    Article  Google Scholar 

  • Oliveira LRM (2012) Estudo de alternativas de pré-tratamento e hidrólise do bagaço e palha de cana-de-açúcar para obtenção de etanol a partir de celulose. (Tese) Programa de Pós Graduação em Biotecnologia Industrial. Área de Concentração: Conversão de Biomassa – Escola de Engenharia de Lorena – Universidade de São Paulo-SP

    Google Scholar 

  • Oliveira FMV, Pinheiro IO, Souto-Maior AM et al (2013a) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173

    Article  PubMed  CAS  Google Scholar 

  • Oliveira LRM, Nascimento VM, Corso DLS, Silva VFN, Rocha GJM, Golçalves AR (2013b) Effects of alkaline organosolv delignification on enzymatic conversion of cellulose from sugarcane bagasse pretreated by steam explosion. Investigaciones Aplicadas 7:1–10

    Google Scholar 

  • Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Olson DG, McBride JE, Shaw J, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  PubMed  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–321

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3(10)

    Google Scholar 

  • Paul R, Teli MD (2011) Effect of swelling and reactive dyeing on the accessibility of cotton to cellulase enzymes. J Appl Polym Sci 121:1946–1950

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quím Nova 26:863–871

    Article  CAS  Google Scholar 

  • Rezende CA, Lima MA, Maziero P et al (2011) Biotechnology Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biofuels 4:54

    Article  CAS  Google Scholar 

  • Rohowsky B, Häßler T, Gladis A, Remmele E, Schieder D, Faulstich M (2013) Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl Energy 102:211–219

    Article  CAS  Google Scholar 

  • Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–205

    Article  CAS  Google Scholar 

  • Rocha GJM, Martín C, Soares IB, Souto-Maior AM, Baudel H, Abreu CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenerg 35:663–670

    Article  Google Scholar 

  • Rocha GJM, Martín C, Silva VFN, Gómez EO, Gonçalves AR (2012a) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour Technol 111:447–452

    Article  PubMed  CAS  Google Scholar 

  • Rocha GJM, Gonçalves AR, Olivares EG, Rossel CEV (2012b) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279

    Article  CAS  Google Scholar 

  • Rocha GJM, Silva VFN, Martin C, Gonçalves AR, Nascimento VM et al (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech. doi:10.1007/s12355-013-0218-9

    Google Scholar 

  • Saha BC, Nichols NN, Cotta MA (2011) Ethanol production from wheat straw by recombinant Escherichia coli strain at high solid loading. Bioresour Technol 102:10892–10897

    Article  PubMed  CAS  Google Scholar 

  • Santos VTO, Esteves PJ, Milagres AMF, Carvalho W (2011) Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Santos RB, Lee JM, Jameel H et al (2012) Effects of hardwood structural and chemical characteristics on enzymatic hydrolysis for biofuel production. Bioresour Technol 110:232–238

    Article  PubMed  CAS  Google Scholar 

  • Seabra JEA (2008) Análise de opções tecnológicas para uso integral da biomassa no setor de cana-de-açúcar e suas implicações. 2008. 298p. Tese (Doutorado em Engenharia Mecânica) - Universidade Estadual de Campinas, Campinas, Brasil

    Google Scholar 

  • Sharifia M, Karimi K, Taherzadeh MJ (2008) Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses. J Ind Microb Biotechnol 35:1253–1259

    Article  CAS  Google Scholar 

  • Silva VFN, Arruda PV, Felipe MGA, Gonçalves AR, Rocha GJM (2011) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38:809–817

    Article  PubMed  CAS  Google Scholar 

  • Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409

    Article  Google Scholar 

  • Silva VFN (2009) Estudos de pré-tratamento e sacarificação enzimática de resíduos agroindustriais como etapas no processo de obtenção de etanol celulósico. Dissertação (Mestre em Ciências – Programa de Pós-Graduação em Biotecnologia Industrial na Área de Conversão de Biomassa) – Escola de Engenharia de Lorena da Universidade de São Paulo.– Lorena:116

    Google Scholar 

  • Shevchenko SM, Beatson RP, Saddler JN (1999) The nature of lignin from steam explosion/enzymatic hydrolysis of softwood. Appl Biochem Biotechnol 77–79:867–876

    Article  PubMed  Google Scholar 

  • Suihko HL (1983) The fermentation of different carbon sources by Fusarium oxysporum. Biotechnol Lett 5:721–724

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 4:707–738

    Google Scholar 

  • Takagi M, Abe S, Suzuki S, Emert GH, Yata N (1977) A method for production of alcohol directly from cellulose using cellulase and yeast. In: Ghose TK (ed) Proceedings of bioconversion of cellulosic substances into energy, chemicals and microbial protein. IIT, New Delhi, pp 551–571

    Google Scholar 

  • Unrean P, Nguyen NH (2013) Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Appl Biochem Biotechnol 169:1895–1909

    Article  PubMed  CAS  Google Scholar 

  • van Zyl WH, den Haan R, la Grange DC (2011) Developing organisms for consolidated bioprocessing of biomass to ethanol. In: Bernardes MADS (ed) Biofuel production-recent developments and prospects, ISBN: 978-953-307-478-8, InTech, Available from: http://www.intechopen.com/books/biofuel-production-recent-developments-and-prospects/developingorganisms-for-consolidated-bioprocessing-of-biomass-to-ethanol

  • Wada M, Masakazu I, Tokuyasu K (2010) Enzyme hydrolysis of cellulose I is greatlty accelerated via its conversion to the cellulose II form. Polym Degrad Stab 95:543–548

    Article  CAS  Google Scholar 

  • Wang K, Yang H, Wang W, Sun RC (2013) Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar. Biotechnol Biofuels 6:42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Wyman CE, Decker SR, Himmel ME et al (2005) Polysaccharides structural diversity and functional versatility, chapter 43. Hydrolysis of cellulose and hemicellulose CRC, 2nd edn. Severian Dumitriu, New York

    Google Scholar 

  • Xiea T, Linb L, Panga C et al (2013) Efficient enzymatic hydrolysis of the bagasse pulp prepared with active oxygen and MgO-based solid alkali. Carbohydr Polym 94(2):807–813

    Article  Google Scholar 

  • Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal A 317:70–81

    Article  CAS  Google Scholar 

  • Yang B, Wyman C (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2(1):26–40

    Article  CAS  Google Scholar 

  • Yang J, Zhanga X, Yong Q et al (2010) Three-stage hydrolysis to enhance enzymatic saccharification of steam-exploded corn stover. Bioresour Technol 101(13):4930–4935

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Jameel H, Chang H, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102(19):9083–9089

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Lou X, Wu H (2008) Some recent advances in Hydrolysis of biomass in hot-compressed water and it comparisons with other hydrolysis methods. Energy Fuels 22:40–60

    Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems. Biotechnol Bioeng 88:797–824

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhang X, Tan T (2008) Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenergy 32:1156–1161

    Article  CAS  Google Scholar 

  • Ziolkowska Jadwiga, Simon L (2011) Biomass ethanol production faces challenges. ARE Update Univ California Giannini Found Agric Econ 14(6):5–8

    Google Scholar 

Download references

Acknowledgments

This work was supported by Escola de Engenharia de Lorena da Universidade de São Paulo (EEL-USP), Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE) belonging to Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Departamento de Antibioticos da Universidade Federal de Pernambuco (UFPE), Débora Lee Simões Corso a Graduate Student in Chemical Technology from the Universidade Estadual Paulista (UNESP), Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Jackson de Moraes Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Moraes Rocha, G.J., Nascimento, V.M., da Silva, V.F.N., Chandel, A.K. (2014). Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production. In: da Silva, S., Chandel, A. (eds) Biofuels in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-05020-1_11

Download citation

Publish with us

Policies and ethics