Skip to main content

Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol

  • Chapter
  • First Online:
Book cover Biofuels in Brazil

Abstract

Brazil achieved important success in the implementation of ethanol as a reality renewable energy source after the inception of the National Alcohol Program (PROÁLCOOL) in 1970. Today, ethanol produced from sugarcane replaces almost 50 % of gasoline in Brazil. More than 448 bioethanol production (first-generation ethanol) units are functional, which fulfill the 25 % ethanol blending to gasoline that eventually reduces the import of 550 million oil barrels improving the socioeconomic status and saving foreign exchange reserves. Brazil has more than 80 % of its light vehicles running on bioethanol, reducing greenhouse gas emissions. At present, this demand for ethanol is being met through first-generation (1G) ethanol which is directly produced from sugarcane juice and molasses. However, significant research in bioenergy in the last two decades has shown the possibilities of commercialization of second-generation (2G) ethanol, which can be produced from sugarcane bagasse (SB) and straw (SS), complementing 1G ethanol. Nevertheless, both the residues (SB and SS) are an excellent source for cogeneration of heat and power (CHP) in sugarcane processing units. Process simulation studies have provided additional source of information on the overall use of sugarcane for ethanol production and CHP. For the evaluation of the fullest utilization of sugarcane and its by-products, CTBE (Brazilian Bioethanol Science and Technology Laboratory) has developed the Virtual Sugarcane Biorefinery (VSB), a comprehensive assessment framework to evaluate a sustainability standpoint (economic, environmental, and social), different biorefinery alternatives. This chapter reviews the important insights made into bioethanol production in Brazil. Technical configuration for 1G and 2G ethanol production and sustainability of ethanol (economic and environmental assessment) have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  PubMed  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Bazico (2010) Sugar [Açúcar] (in Portuguese). Available online at www.bazico.com.br/produto/com_acucar.htm

  • BNDES and CGEE (Coord.), 2008. Sugarcane bioethanol—energy for sustainable development [Bioetanol de cana-de-açúcar – Energia para o Desenvolvimento Sustentável] (in Portuguese). BNDES, Rio de Janeiro

    Google Scholar 

  • Camargo CA (1990) Energy conservation in the sugar and ethanol industry—handbook of recommendations [Conservação de energia na indústria do açúcar e do álcool – Manual de recomendações] (in Portuguese). IPT, São Paulo

    Google Scholar 

  • Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS. (2013) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 2012:1–15. doi:10.1155/2012/989572 (in press)

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  PubMed  CAS  Google Scholar 

  • Cavalett O, Junqueira TL, Dias MOS, Jesus CD, Mantelatto PE, Cunha MP, Franco HCJ, Cardoso TF, Maciel Filho R, Rossell CEV, Bonomi A (2012) Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol Environ Policy 14:399–410

    Article  CAS  Google Scholar 

  • Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. The Int J Life Cycle Assess. 18: 647–658

    Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010a) Key-drivers influencing the commercialization of ethanol based biorefineries. J Commer Biotechnol 16:239–257

    Article  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010b) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Netherlands, pp 63–81

    Chapter  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2012a) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Silva SS, Carvalho W, Singh OV (2012b) Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  CAS  Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2013a) Detoxification of lignocellulose hydrolysates: Biochemical and metabolic engineering towards white biotechnology. BioEner Res 6:388–401

    Article  CAS  Google Scholar 

  • Chandel AK, Caroline BMG, Strap JL, Silva SS (2013b) Bio-delignification of lignocellulosic substrates: an intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol. doi:10.3109/07388551.2013.841638 (accepted, in press)

  • Chavez-Rodriguez MF, Nebra AS (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44:9252–9257

    Article  PubMed  CAS  Google Scholar 

  • Congussu JW, DeCarlo RA, Mathur AP (2003) Using sensitivity analysis to validate a state variable of the software test process. IEEE Trans Softw Eng 29:430–443

    Article  Google Scholar 

  • Copersucar (1987) Material for the course in Sugar Engineering: sugar production process, part I [Apostila do curso de Engenharia açucareira: Processo de Fabricação de Açúcar, parte I] (in Portuguese). Centro de Tecnologia Copersucar, Piracicaba

    Google Scholar 

  • CTBE–Brazilian Bioethanol Science and Technology Laboratory (2012) The Virtual Sugarcane Biorefinery (VSB): 2011 Report. Available online at: https://goo.gl/SNZJo. Access: 15.03.2013

  • Dale BE, Ong RG (2012) Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol Prog 28:893–898

    Article  PubMed  CAS  Google Scholar 

  • Dias MOS (2008) Simulation of ethanol production processes from sugar and sugarcane bagasse, aiming process integration and maximization of energy and bagasse surplus [Simulação do processo de produção de etanol a partir do açúcar e do bagaço, visando a integração do processo e a maximização da produção de energia e excedentes do bagaço] (in Portuguese). MSc Dissertation (Chemical Engineering), School of Chemical Engineering, University of Campinas

    Google Scholar 

  • Dias MOS, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216

    Article  CAS  Google Scholar 

  • Dias MOS, Cunha MP, Maciel Filho R, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38:955–966

    Article  PubMed  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A (2012a) Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy 43:246–252

    Article  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Rossell CEV, Maciel Filho R, Bonomi A (2012b) Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Proc Technol 109:84–89

    Article  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A (2012c) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103:152–161

    Article  PubMed  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Mantelatto PE, Rossell CEV, Maciel Filho R, Bonomi A (2013a) Cogeneration in integrated first and second generation ethanol from sugarcane. Chem Eng Res Des 91:1411–1417

    Article  CAS  Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Pavanello LG, Cunha MP, Jesus CDF, Maciel Filho R, Bonomi A (2013b) Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl Ener 109:72–78

    Article  CAS  Google Scholar 

  • Ensinas AV (2008). Thermal integration and termoeconomic optimization applied to the industrial process of sugar and ethanol from surgarcane [Integração térmica e otimização termoeconômica aplicadas ao processo industrial de produção de açúcar e etanol a partir da cana-de-açúcar] (in Portuguese). Thesis (Ph.D in Mechanical Engineering), School of Mechanical Engineering. University of Campinas

    Google Scholar 

  • Finnveden G, Hauschild MZ, Ekvall T, Guinee J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manage 91:1–21

    Article  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • Galdos M, Cavalett O, Seabra JAE, Nogueira LAH, Bonomi A (2013) Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Appl Ener 104:576–582

    Article  CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  CAS  Google Scholar 

  • Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  PubMed  CAS  Google Scholar 

  • Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goldemberg J (2013) Sugarcane ethanol: strategies to a successful program in Brazil. In: Lee JW (ed) Advanced biofuels and bioproducts. doi:10.1007/978-1-4614-3348-4_2, pp 13–20

  • Hassuani SJ, Leal MRLV, Macedo IC (eds) (2005) Biomass power generation—sugarcane bagasse and trash. PNUD-CTC, Piracicaba

    Google Scholar 

  • Herrera S (2006) Bonkers about biofuels. Nat Biotechnol 24:755–760

    Article  PubMed  CAS  Google Scholar 

  • ISO (2006a) ISO 14040—environmental management—life cycle assessment—principles and framework. The International Organization for Standardization

    Google Scholar 

  • ISO (2006b) ISO 14044—environmental management—life cycle assessment—requirements and guidelines. The International Organization for Standardization

    Google Scholar 

  • Jesus CDF (2004) Validation of dynamic simulation of evaporation and crystallization steps in sugar production considering industrial plant data (Validação da simulação dinâmica das etapas de evaporação e cristalização da produção de açúcar com dados obtidos em plantas industriais). Ph.D. Thesis in Chemical Engineering, Federal University of São Carlos

    Google Scholar 

  • Junqueira TL, Dias MOS, Cavalett O, Jesus CDF, Cunha MP, Rossell CEV, Maciel Filho R, Bonomi A (2012) Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives. Comput Aid Chem Eng 30:177–181

    Article  CAS  Google Scholar 

  • Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28

    Article  CAS  Google Scholar 

  • Kerr RA (2011) Energy supplies. Peak oil production may already be here. Science 331:1510–1511

    Article  PubMed  CAS  Google Scholar 

  • Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Bioref 5:562–569

    Article  CAS  Google Scholar 

  • Kumar D, Murthy GS (2011) Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels 4:27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Mantelatto PE (2010) Information about the sugarcane industry. Private communication

    Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  PubMed  CAS  Google Scholar 

  • OECD/IEA (2010) IEA Statistics Oil Information, Paris. ISBN 978-92-64-08422-3

    Google Scholar 

  • Ohlrogge J, Allen D, Berguson B, Dellapenna D, Shachar-Hill Y, Stymne S (2009) Energy driving on biomass. Science 324:1019–1020

    Article  PubMed  CAS  Google Scholar 

  • Ojeda K, Ávila O, Suárez J, Kafarov V (2011) Evaluation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production—Part 1. Chem Eng Res Des 89:270–279

    Article  CAS  Google Scholar 

  • Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Olson DG, McBride JE, Shaw J, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  PubMed  CAS  Google Scholar 

  • Quintero JA, Moncada J, Cardona CA (2013) Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour Technol 139:300–307

    Article  PubMed  CAS  Google Scholar 

  • Rabelo SC, Amezquita Fonseca NA, Andrade RR, Maciel Filho R, Costa AC (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioener 35:2600–2607

    Article  CAS  Google Scholar 

  • Rass-Hansen J, Falsig H, Jørgensen B, Christensen CH (2007) Bioethanol: fuel or feedstock? J ChemTech Biotechnol 82:329–333

    Article  CAS  Google Scholar 

  • Rein P (2007) Cane sugar engineering. Verlag Dr Akbert Bartens KG, Berlin

    Google Scholar 

  • REN21 (2009) Renewables Global Status Report: 2009 Update (Paris: REN21 Secretariat)

    Google Scholar 

  • Ribeiro P (2003) The sugarcane industry and its automation [A usina de açúcar e sua automação] (in Portuguese), 2ª Ed

    Google Scholar 

  • Rivera EC, Geraldo VC, Sanghikian N, Junqueira T, Capitani DHD, de Jesus CDF, Maciel Filho R, Bonomi A (2013) A screening design to analyze the influence of technological configurations on techno-economic parameters for autonomous distilleries in Brazil. Chem Eng Trans, AIDIC (submitted)

    Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279

    Article  CAS  Google Scholar 

  • Ruano MV, Ribes J, Seco A, Ferrer J (2012) An improved sampling strategy based on trajectory design for design for application of the Morris method to systems with many input factors. Environ Model Soft 37:103–109

    Article  Google Scholar 

  • Seabra JEA, Tao L, Chum HL, Macedo IC (2010) A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering. Biomass Bioener 34:1065–1078

    Article  CAS  Google Scholar 

  • Silva SS, Chandel AK (2012) D-xylitol: fermentative production, application and commercialisation. In: Silva SS, Chandel AK (eds) Springer, Heidelberg. ISBN: 978-3-642-31886-3

    Google Scholar 

  • van Zyl WH, den Haan R, la Grange DC (2011) Developing organisms for consolidated bioprocessing of biomass to ethanol, In: Bernardes MADS (ed) Biofuel production-recent developments and prospects. ISBN: 978-953-307-478-8, InTech, Available from http://www.intechopen.com/books/biofuel-production-recent-developments-andprospects/developingorganisms-for-consolidated-bioprocessing-of-biomass-to-ethanol

  • Vertès AA, Inui M, Yukaw H (2006) Implementing biofuels on a global scale. Nat Biotechnol 24:761–764

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Ensinas AV (2010) Combined production of second-generation biofuels and electricity from sugarcane residues. Energy 35:874–879

    Article  CAS  Google Scholar 

  • Walter A, Dolzan P, Quilodrán O, Garcia J, da Silvia C, Piacente F, Segerstedt A (2008). A sustainability analysis of the Brazilian ethanol. A report supported by UK Embassy and DEFRA. Available online at www.unica.com.br

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the Future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Shen Y, Shi W, Bao X (2010) Ethanolic co-fermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour Technol 101:7093–7099

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to BIOEN-FAPESP for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuj Kumar Chandel or Silvio Silvério da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chandel, A.K. et al. (2014). Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol. In: da Silva, S., Chandel, A. (eds) Biofuels in Brazil. Springer, Cham. https://doi.org/10.1007/978-3-319-05020-1_1

Download citation

Publish with us

Policies and ethics