Skip to main content
  • 2875 Accesses

Abstract

The representation of the behavior of homogeneous materials is carried out through mathematical laws or equations formulated at macroscopic level in the context of the mechanics of continuous media. Most formulations extrapolate this concept and regard the behavior of composite materials from a macroscopic point of view but it is disregarded from the compounding materials’ perspective. However, during the last decades several formulations have been developed to obtain the global behavior of composite materials through the stress and strain fields generated in the compounding materials. Consequently, new “multiscale approaches” have been proposed for the representation of the behavior of heterogeneous materials which use a representative elemental volume for the composite material modeling. The sphere assembly model proposed by Hashin (1962), (1983), is among these representation approaches, in which a domain is filled up by spheres of different sizes respecting the volumetric relation among the phases. Another method called “self-consistent method” was proposed by Hill (1965), Budiansky (1965), Hashin (1970), and Christensen (1979), where the heterogeneities of a medium are represented by an ellipsoidal or cylindrical inclusion within an infinite matrix of unknown elastic properties. There are also models based on the “Mori-Tanaka method” by Mori-Tanaka (1973), which considers cylindrical, ellipsoidal or plane fibers or fractures embedded in an isotropic matrix transversely isotropic or orthotropic. These methods follow an “eigenstrain”-based formulation, which considers an elastic, linear, homogeneous and infinite solid and the eigenstrain is also admitted. This idea was originally proposed by Eshelby (1958).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hashin Z. (1962). The elastic moduli of heterogeneous materials. J. Appl. Mech, Vol. 29, pp. 143-150.

  2. 2.

    Hashin Z. (1983). Analysis of composite materials: a survey. J. Appl. Mech, Vol. 50, pp. 481-505.

  3. 3.

    Hill R. (1965). A self-consistent mechanics of composite materials. J. Mech. Phys. Solids, Vol. 13, pp. 213-222.

  4. 4.

    Budiansky B. (1965). On the elastic moduli of heterogeneous materials. J. Mech. Phys. Solids, Vol. 13, pp. 223227.

  5. 5.

    Hashin Z. (1970). Mechanics of composite materials. Theory of composite materials. Pergamon. Oxford.

  6. 6.

    Christensen R. M. (1979). Mechanics of composites materials. Wiley. New York.

  7. 7.

    Mori T. and Tanaka K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Vol. 21, pp. 571-574.

  8. 8.

    It is admitted that a total strain consists of a pre-written elastic and inelastic part, ε ij =ε e ij +ε * ij .

  9. 9.

    Eshelby J. D. (1958). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London. Vol. 241, pp. 376-396.

  10. 10.

    Sanchez-Palencia E. (1987). Boundary Layers and Edge Efects in Composites. Homogenization Techniques for Composite Media. Ed. E. Sanchez-Palencia and A. Zaoui. Spring-Verlag, Berlin.

  11. 11.

    Suquet P. M. (1987). Elements of homogenization for inelastic solid mechanics. Homogenization Techniques for Composite Media. Ed. E. Sanchez-Palencia and A. Zaoui. Spring-Verlag, Berlin.

  12. 12.

    Zalamea F. (2001). Tratamiento numérico de materiales compuestos mediante la teoría de homogeneización- Ph.D. thesis, Universidad Politécnica de Cataluña (UPC), Barcelona- España.

  13. 13.

    Badillo H. (2012). Numerical modelling based on the multiscale homogenization theory. Application in composites materials and structures- Ph.D. thesis, Universidad Politécnica de Cataluña (UPC), Barcelona- España.

  14. 14.

    Suquet P. M. (1982). Plasticité et Homogénéisation. Université Pierre et Marie Curie. Paris.

  15. 15.

    Hill R. (1967). The Essential Structure of Constitutive Laws for Metal Composites and Polycristals. J. Mech. Phys. Solid. Vol. 15, pp. 79-95.

  16. 16.

    Mandel J. (1972). Plasticié classique et viscoplasticité. Springer-Verlag, Nr. 97, series CISM Lecture Notes.

  17. 17.

    Sanchez-Palencia E. (1974). Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int. J. Eng. Sc., Vol. 12, pp. 331-351.

  18. 18.

    Sanchez-Palencia E. (1980). Non-homogeneous media and vibration theory. Lecture Notes in Physics Vol. 127. Springer-Verlag, Berlin.

  19. 19.

    Bensoussan A. and Lions J. L. and Papanicolaou G. (1978). Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam.

  20. 20.

    Duvaut G. (1976). Analyse Fontionnelle et Mécanique des Milieux Continus. Th. Appl. Mech. Ed. W. Koiter. pp. 119-132, Nord Holland.

  21. 21.

    Lene G. and Duvaut G. (1981). Résultats d’isotropie pour des milieux homogénésiés. Comptes Rendus, Vol. 293, pp. 477-480, Acad. Sci. Paris, Series II.

  22. 22.

    Sanchez-Hubert J. and Sanchez-Palencia E. (1992). Introduction aux méthodes asymptotiques et â l’homogénéisation. Masson.

  23. 23.

    Cole J. D. and Kevorkian (1980). Perturbation Methods in Applied Mathematics. Springer. New York.

  24. 24.

    Sanchez-Palencia E. (1987). Fluids in Porous Media and Suspensions. Homogenization Techniques for Composite Media. Ed. E. Sanchez-Palencia and A. Zaoui. Spring-Verlag Berlin.

  25. 25.

    Swan C. (1994). Techniques for Stress- and Strain-Controlled Homogenization of Inelastic Periodic Composites. Computer Methods in Applied Mechanics and Engineering, Vol. 117, pp. 249-267.

  26. 26.

    Zienkiewicz O. C. and Taylor R. L. (1994). El método de los Elementos Finitos: formuladón básica y problemas lineales, Vol 1. CIMNE, McGraw-Hill. Barcelona.

  27. 27.

    Simo J. C. and Hughes T. J. R. (1998). Computational Inelasticity. Springer-Verlag. New York.

  28. 28.

    Hughes T. (1987). The Finite Element Method. Prentice-Hall.

  29. 29.

    Anthoine A. (1995). Derivation of the in-Plane Characteristics of Masonry Through Homogenization Theory. Int. J. Solids Structures, Vol. 32, No. 2, pp. 137-163.

  30. 30.

    Anthoine A. and Pegon P. (1996). Numerical analysis and modelling of the damage and softening of brick masonry. Numerical Analysis and Modelling of Composite Materials. Blackie academic and professional pp. 152-184.

  31. 31.

    Guedes J. M. and Kikuchi N. (1990). Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Method. Computer Methods in Applied Mechanics and Engineering. Vol. 83, pp. 143-198.

  32. 32.

    Lene F. (1986). Damage Constitutive Relations for Composite Materials. Engineering Fracture Mechanic Vol. 25, pp. 713-728.

  33. 33.

    Devries F. and Dumontet H. and Duvaut G. and Lene F. (1989). Homogenization and Damage for Composite Structures. International Journal for Numerical Methods in Engineering. Vol. 27, pp. 285–298.

  34. 34.

    Fish J. and Wagiman A. (1993-a). Multiscale finite element method for a locally nonperiodic heterogeneous medium. Computational Mechanics. Vol. 12, pp. 164-180.

  35. 35.

    Fish J. and Markolefas F. (1993-b). Adaptive s-method for linear elastostatics. Computer Methods in Applied Mechanics and Engineering. Vol. 104, pp. 363-396.

  36. 36.

    Fish J., Nayak P. and Holmes M. H. (1994-a). Microscale reduction error indicators and estimators for a periodic heterogeneous medium. Computation Mechanics. Vol. 14, 323-338.

  37. 37.

    Fish J., Markolefas S., R. Guttal and P. Nayak (1994-b). On adaptive multilevel superposition of finite element meshes for linear elastostatics. Applied Numerical Mathematics. Vol. 14, pp. 135-164.

  38. 38.

    Fish J. and Belsky V. (1995-a). Multi-grid method for periodic heterogeneous media, Par 1: Convergence studies for one-dimensional case. Comput. Methods Appl. Mech Engrg. Vol. 126, pp. 1-16.

  39. 39.

    Fish J. and Belsky V. (1995-b). Multi-grid method for periodic heterogeneous media, Par 2: Multiscale modeling and quality control in multidimensional case. Comput. Methods Appl. Mech Engrg Vol. 126, pp. 17-38.

  40. 40.

    Zohdi T. I., Oden J. T. and Rodin G. J. (196). Hierarchical modeling of heterogeneous bodies. Comput. Methods Appl, Mech. Engrg.. Vol. 138, pp. 273-298.

  41. 41.

    Moes N., Oden J. T. and Zohdi T. I. (1998). Investigation of the interaction between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method. Comput. Methods Appl. Mech. Engrg. Vol. 159, pp. 79–101.

  42. 42.

    Oden J. T., Vemaganti K. and Moes N. (1999). Hierarchical modeling of heterogeneous solids. Comput Methods Appl. Mech. Engrg. Vol. 172, pp. 3–25.

  43. 43.

    Ghosh S., Lee K. and Moorthy S. (1995). Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method. Solids Structures. Volume 32, No. 1, pp. 27-62.

  44. 44.

    Ghosh S., Lee K. and Moorthy S. (1996). Two Scale Analysis of Heterogeneous Elastic-plastic Materials with Asymptotic Homogenization and Voronoi Cell Finite Element Model. Comput. Methods Appl. Mech. Engrg. Volume 132, pp. 63-116.

  45. 45.

    Ghosh S. and Mukhopadhyays s. N. (1991). A two-dimensional automatic mesh generator for finite element analysis of randomly dispersed composites. Computers Struct. Vol. 41, pp. 245-256.

  46. 46.

    Ghosh S. and Mukhopadhyays s. N. (1993). A materials based finite element analysis of heterogeneous media involving Dirichlet tessellations. Comp. Meth. Appl. Mech. Engng. Vol. 104, pp. 211-247.

  47. 47.

    Pian T. (1964). Derivation of element stiffeness matrices by assumed stress distribution. AIAA J. Vol. 2. pp. 1333-1336.

  48. 48.

    Lee K., Moorthy S. and Ghosh S. (1999). Multiple scale computational model for damage in composite materials. Cumput. Methods Appl. Mech. Engrg. Vol. 172, pp. 175-201.

  49. 49.

    Anthoine A. and Pegon P. (1996). Numerical Analysis and Modelling of Composite Materials. Chapter: Numerical analysis and modelling of the damage and softening of brick masonry. Blackie academic and professional. pp. 152-184.

  50. 50.

    Fish J., Shek K., Pandheeradi M. and Shephard M. S. (1997). Computational Plasticity for Composite Structures Based on Mathematical Homogenization: Theory and Practice. Computer methods in applied mechanics and engineering. Vol. 148, pp. 53-73.

  51. 51.

    Levi T., Sanchez-Palencia E. and Zaoui A. (1987). Homogenization Techniques for Composite Media. Chapter: Fluids in Porous Media and Suspensions. Springer-Verlag.

  52. 52.

    Oleinik O. A., Shamaev A. S. and Yosifian G. A. (1992). Mathematical Problems in Elasticity and Homonenization. Elsevier Science Publishers B. V. Vol. 26, Series:Studies in mathematics and its applications.

  53. 53.

    Zalamea F., Miquel Canet J., and Oller S., 1999a. Teoría de homogeneización para el análisis de materiales compuestos con estructura interna periódica. Proceedings IV Congreso de Métodos Numéricos en Ingeniería, Ed. R. Abascal, J. Domínguez, G. Bugeda. SEMNI CD-ROM.

  54. 54.

    Note that the classic constitutive equation used for homogeneous materials is replaced by the problem’s solution at macro scale level.

  55. 55.

    Fish J. and Shek K. (1999). Finite deformation for composite structures: Computational models and adaptive strategies. Comput Methods Appl. Mech. Engrg. Vol. 172, pp. 145-174.

  56. 56.

    Zalamea F., Miquel J. and Oller S. (1998). Treatment of Composite Materials based on the Homogenization Method. Proceedings of the Fourth World Congress on Computational Mechanics. CIMNE.

  57. 57.

    Zalamea F., Miquel J., Oller S., (1999b). Un Método en doble escala para la simulación de materiales compuestos. III Congreso Nacional de Materiales Compuestos. “MATCOMP 99”. Ed. A. Corz, J. M. Pintado. Materiales Compuestos 99 - AEMAC, pp 381-393 - Málaga. España. 1999.

  58. 58.

    Zalamea F., Miquel J., Oller S. (2000). A double scale method for simulating of periodic composite materials. European Congress on Computational Methods in Applied Sciences and Engineering, ECOMAS 2000 - COMPLAS VI. Ed. E. Oñate, R. Owen. CD-ROM - CIMNE Barcelona.

  59. 59.

    Geist Al, Beguelin A., Dongarra J., Jiang W., Manchek R. and Sunderam V. (1994). Paralle Virtual Machine - A Users’ Guide and Tutorial for Networked Parallel Computing. Ed. Jasnusz Kowalik. Massachusetts Institute Technology.

  60. 60.

    Dennis J. E., and More J. J. (1977). Quasi-Newton methods, motivation and theory. SIAM. Review

  61. 61.

    Crisfield M. (1980). Numerical Methods for Nonlinear Problem. Pineridge Press.

  62. 62.

    Dumontet H. (1986). Local Effects in the Analysis of Structures. Chapter. Boundary layers stresses in elastic composites. Elsevier.

  63. 63.

    Jansson S. (1992). Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure. Int. J. Solids Structures, Vol. 29, No. 17, pp. 2181–2200.

  64. 64.

    Molins Borrell, C. (1986). Structural analysis of historical constructions. Capítulo de: Characterization of the mechanical Behaviour of masonry, pp. 86–122. Eds. P. Roca, J.L. González, A. Marí and E. Oñate. CIMNE, Barcelona.

  65. 65.

    Lourenço, P. (1996). Computational Strategies for Masonry Structures. Delft University Press.

  66. 66.

    Zijl, G.P.A.G. van, Lourenço, P.B. and Rots, J. G. (1997). Non-Associated Plasticity Formulation for Masonry Interface Behaviour. Int. J. Comp. Plasticity. pp. 1586–1593.

  67. 67.

    Oliver J., Cervera M., Oller S., and Lubliner J. (1990). Isotropic Damage Models and Smeared Crack Analysis of Concrete. Second International Conference on Analysis and Design of Concrete Structures. pp. 945–958.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 International Center for Numerical Methods in Engineering (CIMNE)

About this chapter

Cite this chapter

Oller, S. (2014). Homogenization Theory. In: Numerical Simulation of Mechanical Behavior of Composite Materials. Lecture Notes on Numerical Methods in Engineering and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-04933-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04933-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04932-8

  • Online ISBN: 978-3-319-04933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics