Skip to main content
  • 2391 Accesses

Abstract

This chapter focuses on the introduction of the relative movement phenomenon of the rigid body in the mixing theory. It takes place between the reinforcement and matrix phases when the debounding stress between both components is exceeded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Beyerley D. and Spearing S. M. and Zok F. W. and Evans A. G. (1992). Damage, degradation and failure in a unidirectional ceramic-matrix composite. J. Am. Ceram. Soc., vol. 75, pp. 2719-2725.

  2. 2.

    Pryce A. W. and Smith P. A. (1992). Modelling of the stress/strain behavior of unidirectional ceramic matrix composite laminates. J. Mater. Sci., vol. 27, pp. 2695-2704.

  3. 3.

    Hild F. and Burr A. (1996). Matrix Cracking and Debounding of Ceramic-Matrix Composites. Int. J. Solids Structures Vol. 33 No. 8, pp. 1209-1220.

  4. 4.

    Owen D.R.J. and Lyness J.F. (1972). Investigation of bond failure in fibre-reinforced materials by the finite element method. Fibre Sci. Technol., vol. 5, pp. 129-141.

  5. 5.

    Agarwal B. D. and Bansal R. K. (1979). Effect of an interfacial layer on the properties of fibrouscomposites: a theoretical analysis. Fibre Sci. Technol. vol. 5, pp. 129-141.

  6. 6.

    Hull D. (1987). Materiales compuestos. Editorial Reverté, España.

  7. 7.

    Aboudi J. (1982). A continuum theory for fiber-reinforced elastic viscoplastic composites. Int. J. Engng. Sci., vol. 20, pp. 605-621.

  8. 8.

    Aboudi J. (1984). Effective behaviour of inelastic fiber-reinforced composites. Int. J. Engng. Sci., vol. 22, pp. 439-449.

  9. 9.

    Benveniste Y. and Aboudi J. (1984)A continuum model for fiber reinforced materials with debounding. Int. J. Solids Struct. vol. 20, pp. 935.

  10. 10.

    Drumheller (1973). An effect of debounding on stress wave propagation in a composite material. J. Appl. Mech., vol. 40, pp. 1146-1157.

  11. 11.

    Cox H. L. (1952). The elasticity and the strength of paper and other fibrous materials. Br. J. Appl. Phys., vol. 3, pp. 72-79.

  12. 12.

    Aveston J. and Cooper G. A. and Kelly A. (1971). Single and multiple fracture. Conference Proceedings of the National Physical Laboratory: Properties of Fiber Composites.

  13. 13.

    Hsueh C. H. (1993). Evaluation of interfacial properties of fiber-reinforced ceramic composites using a mechanical properties microprobe. J. Am. Ceram. Soc., vol. 76, pp. 3041-3050.

  14. 14.

    Curtin W. A. (1991).Exact theory of fiber fragmentation in single-filament composite. J. Mater. Sci. vol. 26, pp. 5239-5253.

  15. 15.

    Hild F. and Burr A. (1996). Matrix Cracking and Debounding of Ceramic-Matrix Composites. Int. J. Solids Structures Vol. 33 No. 8, pp. 1209-1220.

  16. 16.

    Hutchinson J. W. and Jensen H. M. (1990). Models of fiber debounding and pullout in brittle composites with friction. Mechanics of Materials, vol. 9, pp. 139-163.

  17. 17.

    Hild F., Burr A. and Leckie A. (1994). Fiber breakage and fiber pull out of fiber-reinforced ceramic-matrix composites. Eur. J. Mech. A/Solids, vol. 13, pp. 731-749, No. 6.

  18. 18.

    Car E. and Oller S. and Oñate E. (1998). Un modelo constitutivo elasto plástico acoplado con daño mecánico e higrométrico. Aplicación a pavimentos flexibles. Revista International de Ingenieriá de Estructuras, vol. 3(1), pp. 19-37.

  19. 19.

    Hild F., Burr A. and Leckie A. (1994). Fiber breakage and fiber pull out of fiber-reinforced ceramic-matrix composites. Eur. J. Mech. A/Solids, vol. 13, pp. 731-749, No. 6

  20. 20.

    Hild F. (1994). On the average pull-out length of the fibre-reinforced composites. C.R. Acad. Sci. Paris. vol. 319 (Serie II), pp. 1123-1128.

  21. 21.

    Malvern L.E. (1969). Introduction to the Mechanics of a Continuous Medium. Prentice-Hall.

  22. 22.

    Crisfield M.A. (1991). Non-linear finite element analysis of solids and structures. John Wiley & Sons Ltd.

  23. 23.

    Bathe K. J. (1982). Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc.

  24. 24.

    Lubliner J. (1990). Plasticity Theory. Macmillan Publishing, U.S.A.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 International Center for Numerical Methods in Engineering (CIMNE)

About this chapter

Cite this chapter

Oller, S. (2014). FIBER-MATRIX DISPLACEMENT (FMD) - Debounding. In: Numerical Simulation of Mechanical Behavior of Composite Materials. Lecture Notes on Numerical Methods in Engineering and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-04933-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04933-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04932-8

  • Online ISBN: 978-3-319-04933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics