Skip to main content

Mechanism and Structures: Humanoids and Quadrupeds

  • Chapter
  • First Online:
Bioinspired Approaches for Human-Centric Technologies

Abstract

The world, both natural and man-made, is a complex, unstructured, cluttered and dynamically changing environment through which humans and animals move with consummate ease, adapting to changing environments, terrains and challenges. Wheeled robots are increasingly able to work in some of these terrains, particularly those that have naturally or artificially smoothed surfaces, but there are, and will continue to be, many scenarios where only human-/animal-like levels of agility, compliance, dexterity, robustness, reliability and movement/locomotion will be effective. These domains will create new opportunities for legged locomotion (both bipedal and quadrupedal), but these new challenges will demand increased functionality in the legged robots, moving from the current domain dominated by simple walking and balance maintenance, to address key whole-body interaction issues during physical contact with humans, other robots and the environment (Fig. 5.1). This will require the development of robots that are able to exploit:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akachi K, Kaneko K, Kanehira N, Ota S, Miyamori G, Hirata M, Kajita S, Kanehiro F (2005) Development of humanoid robot HRP-3P. In: 2005 5th IEEE-RAS international conference on humanoid robots. IEEE, pp 50–55

    Google Scholar 

  • Asfour T, Azad P, Vahrenkamp N, Regenstein K, Bierbaum A, Welke K, Schroeder J, Dillmann R (2008) Toward humanoid manipulation in human-centred environments. Robot Auton Syst 56:54–65

    Article  Google Scholar 

  • Barasuol V, Buchli J, Semini C, Frigerio M, De Pieri ER, Caldwell DG (2012) A reactive controller framework for quadrupedal locomotion on challenging terrain. In: IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Darpa (2013) http://www.darpa.mil/Our_Work/TTO/Programs/DARPA_Robotics_Challenge.aspx

  • Davis S, Tsagarakis NG, Caldwell DG (2008) The initial design and manufacturing process of a low cost hand for the robot iCub. In: IEEE humanoids 2008. Daejean, Korea, December 2008, pp 40–45

    Google Scholar 

  • Electra (2011) http://www.elettra.trieste.it/lightsources/labs-and-services/scientific-computing/sincrobot.html

  • Farley C, Taylor C (1991) A mechanical trigger for the trot-gallop transition in horses. Science 253(5017):306–308

    Article  CAS  PubMed  Google Scholar 

  • Fedak MA, Heglund NC, Taylor CR (1982) Energetics and mechanics of terrestrial locomotion. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals. J Exp Biol 79:23–40

    Google Scholar 

  • Heglund NC, Taylor CR (1988) Speed, stride frequency and energy-cost per stride—how do they change with body size and gait. J Exp Biol 138:301–318

    CAS  PubMed  Google Scholar 

  • Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of Honda humanoid robot. In: Proceedings of the 1998 I.E. international conference on robotics and automation. IEEE, pp 1321–1326

    Google Scholar 

  • Hirose M, Ogawa K (2007) Honda humanoid robots development. Philos Trans A Math Phys Eng Sci 365:11–19

    Article  PubMed  Google Scholar 

  • Hirose R, Takenaka T (2001) Development of the humanoid robot ASIMO. Honda R&D Tech Rev 13:1–6

    Google Scholar 

  • Hoyt D, Taylor R (1981) Gait and the energetics of locomotion in horses. Nature 292:239–240

    Article  Google Scholar 

  • Hurst J (2011) The electric cable differential leg: a novel design approach for walking and running. Int J HR 8(02):301–321

    Google Scholar 

  • Hurst JW, Rizzi AA (2008) Series compliance for an efficient running gait. IEEE Trans Robot Autom 15(3):42–51

    Article  Google Scholar 

  • Kaneko K, Harada K, Kanehiro F, Miyamori G, Akachi K (2008) Humanoid robot HRP-3. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2008), September 2008, pp 2471–2478

    Google Scholar 

  • Li Z, Tsagarakis N, Caldwell DG (2012) A passivity based cartesian admittance control for stabilizing the compliant humanoid COMAN. In: 2012 IEEE-RAS international conference on humanoid robots, IEEE Humanoids’12, Osaka, Japan, November 2012, pp 44–49

    Google Scholar 

  • Lohmeier S, Buschmann T, Ulbrich H, Pfeiffer F (2006) Modular joint design for performance enhanced humanoid robot LOLA. In: IEEE international conference on robotics and automation (ICRA 2006), May 2006, pp 88–93

    Google Scholar 

  • Metta G, Sandini G, Vernon D, Natale L, Nori F (2008) The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th workshop on performance metrics for intelligent systems, 2008. ACM, pp 50–56

    Google Scholar 

  • Nanua P, Waldron KJ (1995) Energy comparison between trot, bound, and gallop using a simple model. J Biomed Eng 117(4):466–473

    CAS  Google Scholar 

  • Nichol JG, Singh SPN, Waldron KJ, Palmer LR, Orin DE (2004) System design of a quadrupedal galloping machine. Int J Rob Res 23(10–11):1013–1027

    Article  Google Scholar 

  • Ogura Y, Aikawa H, Shimomura K, Kondo H, Morishima A, Ok Lim H, Takanishi A (2006) Development of a new humanoid robot WABIAN-2. In: IEEE international conference on robotics and automation (ICRA 2006), May 2006, pp 76–81

    Google Scholar 

  • Park IW, Kim JY, Lee J, Oh JH (2007) Mechanical design of the humanoid robot platform, HUBO. Adv Robot 21:1305–1322

    Article  Google Scholar 

  • Pratt GA, Williamson MM (1995) Series elastic actuators. In: IEEE/RSJ international conference on intelligent robots and systems—workshop on ‘human robot interaction and cooperative robots’, Pittsburg, PA, pp 399–406. D:\Dropbox\MyPhDThesis\ReferenceArticles\SEA_mattw_ms_thesis.pdf

    Google Scholar 

  • Pratt J, Koolen T, De Boer T, Rebula J, Cotton S, Carff J, Johnson M, Neuhaus P (2012) Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int J Rob Res 31:1117–1133

    Article  Google Scholar 

  • Sang-Ho H, Hale JG, Cheng G (2007) Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans Robot Autom 23:884–898

    Article  Google Scholar 

  • Semini C (2010) HyQ – design and development of a hydraulically actuated quadruped robot. Ph.D. thesis, Italian Institute of Technology, University of Genoa, Italy

    Google Scholar 

  • Semini C, Tsagarakis NG, Vanderborght B, Yang Y, Caldwell DG (2008) HyQ—hydraulically actuated quadruped robot: hopping leg prototype. In: IEEE BioRob, pp 593–599

    Google Scholar 

  • Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of HyQ – a hydraulically and electrically actuated quadruped robot. Proc Inst Mec Eng Part I J Syst Eng Control 225(6):831–849

    Article  Google Scholar 

  • Tsagarakis NG, Metta G, Sandini G, Vernon D, Beira R, Santos-Victor J, Carrazzo MC, Becchi F, Caldwell DG (2007) iCub—the design and realisation of an open humanoid platform for cognitive and neuroscience research. Int J Adv Robot 21(10):1151–1175

    Article  Google Scholar 

  • Tsagarakis NG, Laffranchi M, Vanderborght B, Caldwell DG (2009) A compact soft actuator unit for small scale human friendly robots. In: ICRA 2009, Kobe, Japan, May 2009, pp 4356–4362

    Google Scholar 

  • Tsagarakis NG, Zhibin Li, Saglia JA, Caldwell DG (2011) The design of the lower body of the compliant humanoid robot “cCub”. In: IEEE international conference on robotics and automation, ICRA 2011, Shanghai, China, May 2011, pp 2035–2040

    Google Scholar 

  • Tsagarakis N, Sardellitti I, Caldwell DG (2011) A new variable stiffness actuator (CompAct-VSA) design, implementation and modelling. In: IEEE/RSJ proceedings of international conference on intelligent robots and systems, IROS’11, San Francisco, CA, September 2011, pp 378–383

    Google Scholar 

  • Tsagarakis NG, Morfey S, Medrano-Cerda GA, Li Z, Caldwell DG (2013) Development of compliant humanoid robot COMAN: body design and Stiffness Tuning. In: IEEE international conference on robotics and automation 2013 (ICRA 2013), Karlsruhe, Germany, pp 665–670

    Google Scholar 

  • Ugurlu B, Havoutis I, Semini C, Caldwell DG (2013) Dynamic trot-walking with the hydraulic quadruped robot—HyQ: analytical trajectory generation and active compliance control. In: IEEE/RSJ international conference on intelligent robots and systems (IROS)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwin G. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caldwell, D.G., Tsagarakis, N., Semini, C. (2014). Mechanism and Structures: Humanoids and Quadrupeds. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_5

Download citation

Publish with us

Policies and ethics