Skip to main content

Emerging Technologies Inspired by Plants

  • Chapter
  • First Online:

Abstract

Soil is a vital resource for living organisms and provides energy and precious elements for mankind. How do plants address and manage a large amount of information (which is primarily obtained from the soil) to survive extreme conditions? How can roots avoid danger if they cannot move quickly within the soil? Additionally, can science and technology take advantage of strategies to penetrate and explore soil as well as to maintain good performance in terms of energy efficiency? Biomimetics is considered as an approach to study plants and to demonstrate the improvements in technological development that can result from imitating the natural characteristics of plants. After describing some of the main characteristics of plants, specifically their roots, we focus on natural strategies that plant roots use to penetrate soil. Additionally, we describe how the elongation of the root tip apex can be studied from an engineering perspective and provide insight into the pressure required for the root to move forward. In the second part of this study, we propose robotic plant root-like systems called PLANTOIDS that mimic root behavior and include distributed sensing, actuation, and intelligence for tasks such as environmental exploration and monitoring. In the final part of this study, we address bioinspiration from the motion of a plant and its materials. The active mechanism in plant movements is reviewed, and, specifically, an analytical approach to a bioinspired osmotic system is described. Finally, passive natural mechanisms and available technological actuation mechanisms are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atkins PW, de Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, New York, NY

    Google Scholar 

  • Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B (2009) Biomimetics: lessons from nature—an overview. Phil Trans R Soc A 367(1893):1445–1486

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133(4):1677–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgert I, Fratzl P (2009) Actuation systems in plants as prototypes for bioinspired devices. Philos Trans R Soc A 367(1893):1541–1557

    Article  CAS  Google Scholar 

  • Clark L, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104

    Article  CAS  Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  • Darwin C (1880) The power of movement in plants. Murray, London

    Google Scholar 

  • Dawson C, Vincent JFV, Rocca AM (1997) How pine cones open. Nature 390:668

    Article  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3(5):713–720

    Article  CAS  PubMed  Google Scholar 

  • Dumais J, Forterre Y (2012) “Vegetable Dynamicks”: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478

    Article  Google Scholar 

  • Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316(5826):884–886

    Article  CAS  PubMed  Google Scholar 

  • Esmon CA, Pedmale UV, Liscum E (2005) Plant tropisms: providing the power of movement to a sessile organism. Int J Dev Biol 49(5–6):665–674

    Article  CAS  PubMed  Google Scholar 

  • Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci USA 103:236–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116(1):1–7

    Article  CAS  PubMed Central  Google Scholar 

  • Evangelista D, Hotton S, Dumais J (2011) The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J Exp Bot 215(2):521–529

    Article  Google Scholar 

  • Fahn A, Werker E (1972) Anatomical mechanisms of seed dispersal. In: Kozlowski TT (ed) Seed biology. Academic, New York, NY, pp 151–221

    Chapter  Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus flytrap snaps. Nature 433:421–425

    Article  CAS  PubMed  Google Scholar 

  • Gast AP, Zukoski CF (1989) Electrorheological fluids as colloidal suspensions. Adv Colloid Interface Sci 30:153–202

    Article  CAS  Google Scholar 

  • Gilroy S, Masson PH (2008) Plant tropisms. Blackwell, Oxford

    Google Scholar 

  • Hart JW (1990) Plant tropisms and other growth movements. Unwin Hyman, London

    Google Scholar 

  • Herrlich S, Spieth S, Messner S, Zengerle R (2012) Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 64:1617–1627

    Article  CAS  PubMed  Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Hohm T, Preuten T, Fankhauser C (2013) Phototropism: translating light into directional growth. Am J Bot 100:47–59

    Article  CAS  PubMed  Google Scholar 

  • Iijima M, Morita S, Barlow WP (2008) Structure and function of the root cap. Plant Prod Sci 11:17–27

    Article  Google Scholar 

  • Ionov L (2013) Biomimetic hydrogel-based actuating systems. Adv Funct Mater 23:4555–4570

    Article  CAS  Google Scholar 

  • Jost L, Gibson RJH (1907) Lectures on plant physiology. Clarendon, Oxford

    Google Scholar 

  • Li Y-H, Su Y-C (2010) Miniature osmotic actuators for controlled maxillo-facial distraction osteogenesis. J Micromech Microeng 20:065013

    Article  Google Scholar 

  • Li S, Wang KW (2013) On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model. Smart Mater Struct 22:014001

    Article  Google Scholar 

  • Loreto F, Barta C, Brilli F, Nogues I (2006) On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ 29:1820–1828

    Article  CAS  PubMed  Google Scholar 

  • Martone PT, Boller M, Burgert I, Dumais J, Edwards J, Mach K, Rowe NP, Rueggeberg M, Seidel R, Speck T (2010) Mechanics without muscle: biomechanical inspiration from the plant world. Integr Comp Biol 50:888–907

    Article  PubMed  Google Scholar 

  • Mazzolai B, Mondini A, Corradi P, Laschi C, Mattoli V, Sinibaldi E, Dario P (2011) A miniaturized mechatronic system inspired by plant roots for soil exploration. Trans Mechatron IEEE/ASME 16:201–212

    Article  Google Scholar 

  • Moulia B, Fournier M (2009) The power and control of gravitropic movements in plants: a biomechanical and systems biology view. J Exp Bot 60:461–486

    Article  CAS  PubMed  Google Scholar 

  • Preston R (1974) The physical biology of plant cell walls. Chapmann and Hall, London

    Google Scholar 

  • Reyssat E, Mahadevan L (2009) Hygromorphs: from pine cones to biomimetic bilayers. J R Soc Interface 6(39):951–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sadeghi A, Beccai L, Mazzolai B (2012) Innovative soft robots based on electro-rheological fluids. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS 2012, Vilamoura, Algarve, 7–12 October 2012

    Google Scholar 

  • Sadeghi A, Tonazzini A, Popova L, Mazzolai B (2013) Innovative robotic mechanism for soil penetration inspired by plant roots. In: Proceedings of the 2013 I.E. international conference on robotics and automation, ICRA2013, Karlsruhe, 6–10 May 2013

    Google Scholar 

  • Samejima M, Sibaoka T (1980) Changes in the extracellular ion concentration in the main pulvinus of Mimosa pudica during rapid movement and recovery. Plant Cell Physiol 21(3):467–479

    CAS  Google Scholar 

  • Sinibaldi E, Puleo GL, Mattioli F, Mattoli V, Di Michele F, Beccai L, Tramacere F, Mancuso S, Mazzolai B (2013) Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom. Bioinspir Biomim 8(2):025002

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Taccola S, Zucca A, Greco F, Mazzolai B, Mattoli V (2013) Electrically driven dry state actuators based on PEDOT:PSS nanofilms. In: EuroEAP 2013, international conference on electromechanically active polymer (EAP) transducers & artificial muscles, Duebendorf, 25–26 June 2013

    Google Scholar 

  • Taccola S, Greco F, Zucca A, Innocenti C, de Julián Fernández C, Campo G, Sangregorio C, Mazzolai B, Mattoli V (2013b) Characterization of free-standing PEDOT:PSS/iron oxide nanoparticles composite thin films and application as conformable humidity sensors. ACS Appl Mater Interfaces 5(13):6324–6332

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Takahashi H, Miyazawa Y, Fujii N (2009) Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69:489–502

    Article  CAS  PubMed  Google Scholar 

  • Taya M (2003) Bio-inspired design of intelligent materials. Proc SPIE 5051:54–65

    Article  Google Scholar 

  • Theeuewes F, Yum SY (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng 4:343–353

    Article  Google Scholar 

  • Tonazzini A, Sadeghi A. Popova L, Mazzolai B (2013) Plant root strategies for robotic soil. In: Lepora N, Mura A, Holger K, Verschure P, Prescott T (eds) Biomimetic and biohybrid systems. Second international conference, living machines 2013, London, 29 July–2 August 2013. Lecture notes in artificial intelligence, vol 8064. Springer, Heidelberg, p 447

    Google Scholar 

  • Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746

    Article  PubMed  Google Scholar 

  • Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BJ, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447

    Article  CAS  PubMed  Google Scholar 

  • Zang J, Wang Q, Tu Q, Ryu S, Pugno N, Buehler M, Zhao X (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12:321–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazzolai, B., Mattoli, V., Beccai, L., Sinibaldi, E. (2014). Emerging Technologies Inspired by Plants. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_4

Download citation

Publish with us

Policies and ethics