Skip to main content

Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues

  • Chapter
  • First Online:
Bioinspired Approaches for Human-Centric Technologies

Abstract

The parameters that affect and optimize the interactions at bio/non-biointerfaces are revised and analyzed in this chapter. We focus on soft polymeric materials starting with their critical properties that determine the viability of biological systems in contact with them. In particular, the right combination of surface chemistry, topography, and mechanical properties of the employed materials can generate the ideal interface for the target biological organism. We present the state of the art of the applications of such bio/soft matter composites interactions in tissue engineering for scaffolds and skin wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    CAS  PubMed  Google Scholar 

  • Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848

    CAS  PubMed  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271

    CAS  PubMed  Google Scholar 

  • Arakawa H, Neault JF, Tajmir-Riahi HA (2001) Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys J 81(3):1580–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100

    CAS  PubMed  Google Scholar 

  • Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2):151–165

    CAS  PubMed  Google Scholar 

  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    CAS  PubMed  Google Scholar 

  • Athanassiou A, Lygeraki MI, Pisignano D, Lakiotaki K, Varda M, Mele E, Fotakis C, Cingolani R, Anastasiadis SH (2006) Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring. Langmuir 22:2329

    CAS  PubMed  Google Scholar 

  • Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29:739

    CAS  PubMed  Google Scholar 

  • Battista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA (2005) The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26:6194

    CAS  PubMed  Google Scholar 

  • Bayer IS, Fragouli D, Martorana PJ, Martiradonna L, Cingolani R, Athanassiou A (2011) Solvent resistant superhydrophobic films from self-emulsifying carnauba wax–alcohol emulsions. Soft Matter 7:7939

    CAS  Google Scholar 

  • Beke S, Anjum F, Tsushima H, Ceseracciu L, Chieregatti E, Diaspro A, Athanassiou A, Brandi F (2012) Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds. J R Soc Interface 9:3017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beke S, Anjum F, Ceseracciu L, Romano I, Athanassiou A, Diaspro A, Brandi F (2013) Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm. Laser Phys 23:035602

    Google Scholar 

  • Belser K, Vig Slenters T, Pfumbidzai C, Upert G, Mirolo L, Fromm KM, Wennemers H (2009) Silver nanoparticle formation in different sizes induced by peptides identified within split-and-mix libraries. Angew Chem Int Ed Engl 48(20):3661–3664

    CAS  PubMed  Google Scholar 

  • Beniash E, Hartgerink JD, Storrie H, Stendahl JC, Stupp SI (2005) Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. Acta Biomater 1(4):387–397

    PubMed  Google Scholar 

  • Best JP, Javed S, Richardson JJ, Cho KL, Kamphuis MMJ, Caruso F (2013) Stiffness-mediated adhesion of cervical cancer cells to soft hydrogel films. Soft Matter 9:4580

    CAS  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosanbased hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99

    CAS  PubMed  Google Scholar 

  • Biondi M, Ungaro F, Quaglia F, Netti PA (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60(2):229–242

    CAS  PubMed  Google Scholar 

  • Blaser SA, Scheringer M, Macleod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409

    CAS  PubMed  Google Scholar 

  • Borselli C, Oliviero O, Battista S, Ambrosio L, Netti PA (2007) Induction of directional sprouting angiogenesis by matrix gradients. J Biomed Mater Res A 80A(2):297–305

    CAS  Google Scholar 

  • Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428

    CAS  PubMed  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    CAS  PubMed  Google Scholar 

  • Burgess BT, Myles JL, Dickinson RB (2000) Quantitative analysis of adhesion-mediated cell migration in three-dimensional gels of RGD-grafted collagen. Ann Biomed Eng 28(1):110–118

    CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    CAS  PubMed  Google Scholar 

  • Cai Z-X, Mo X-M, Zhang K-H, Fan L-P, Yin A-L, He C-L, Wang H-S (2010) Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 11:3529–3539

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calne S (2011) Acellular matrices for the treatment of wounds. Wounds International, London

    Google Scholar 

  • Caputo G, Nobile C, Kipp T, Blasi L, Grillo V, Carlino E, Manna L, Cingolani R, Cozzoli PD, Athanassiou A (2008) Reversible wettability changes in colloidal TiO2 nanorod thin-film coatings under selective UV laser irradiation. J Phys Chem C 112:701

    CAS  Google Scholar 

  • Caputo G, Cortese B, Nobile C, Salerno M, Cingolani R, Gigli G, Cozzoli PD, Athanassiou A (2009) Reversibly light-switchable wettability of hybrid organic/inorganic surfaces with dual micro-/nanoscale roughness. Adv Funct Mater 19:1149

    CAS  Google Scholar 

  • Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28(34):5093–5099

    CAS  PubMed  Google Scholar 

  • Chan G, Mooney DJ (2008) New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26:382–392

    CAS  PubMed  Google Scholar 

  • Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T, Supaphol P (2010) Preparation and characterization of chitosan -hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym 81:675–680

    CAS  Google Scholar 

  • Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T (2012) Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int J Pharm 427(2):379–384

    CAS  PubMed  Google Scholar 

  • Chaterji S, Gemeinhart RA (2007) Enhanced osteoblast-like cell adhesion and proliferation using sulfonate-bearing polymeric scaffolds. J Biomed Mater Res A 83A(4):990–998

    CAS  Google Scholar 

  • Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264

    PubMed  Google Scholar 

  • Chen J-P, Chang G-Y, Chen J-K (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313–314:183–188

    Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653

    CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    CAS  PubMed  Google Scholar 

  • Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(ɛ-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899

    CAS  PubMed  Google Scholar 

  • Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K (2010) Nano-silver—feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 4(3):284–295

    CAS  PubMed  Google Scholar 

  • Ciofani G, Genchi GG, Liakos I, Athanassiou A, Mattoli V, Bandiera A (2013) Human recombinant elastin-like protein coatings for muscle cell proliferation and differentiation. Acta Biomater 9:5111

    CAS  PubMed  Google Scholar 

  • Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269

    CAS  PubMed  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob Agents Chemother 46(8):2668–2670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13

    CAS  PubMed  Google Scholar 

  • Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754

    CAS  PubMed  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287

    PubMed  Google Scholar 

  • Engler A, Sen S, Sweeney H, Discher D (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677

    CAS  PubMed  Google Scholar 

  • Enoch S, Grey JE, Harding KG (2006) ABC of wound healing: recent advances and emerging treatments. BMJ 332:962

    PubMed Central  PubMed  Google Scholar 

  • Fan L, Yumin D, Zhang B, Yang J, Cai J, Zhang L, Zhou J (2005) Preparation and properties of alginate/water‐soluble chitin blend fibers. J Macromol Sci A Pure Appl Chem 42(6):723–732

    Google Scholar 

  • Fan L, Du Y, Zhang B, Yang J, Zhou J, Kennedy JF (2006) Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydr Polym 65(4):447–452

    CAS  Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2(10):820–832

    CAS  PubMed  Google Scholar 

  • Fiejdasz S, Szczubiałka K, Lewandowska-Łańcucka J, Osyczka AM, Nowakowska M (2013) Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed Mater 8:035013

    PubMed  Google Scholar 

  • Finetti F, Basile A, Capasso D, Di Gaetano S, Di Stasi R, Pascale M, Turco CM, Ziche M, Morbidelli L, D’Andrea LD (2012) Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem Pharmacol 84(3):303–311

    CAS  PubMed  Google Scholar 

  • Fittkau MH, Zilla P, Bezuidenhout D, Lutolf MP, Human P, Hubbell JA, Davies N (2005) The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials 26(2):167–174

    CAS  PubMed  Google Scholar 

  • Fonseca KB, Gomes DB, Lee K, Santos SG, Sousa AF, Silva EA, Mooney DJ, Granja PL, Barrias CC (2014) Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules 15:380–390

    CAS  PubMed  Google Scholar 

  • Fu J, Wang Y-K, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7:733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaharwar AK, Rivera C, Wu C-J, Chan BK, Schmidt G (2013) Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics. Mater Sci Eng C 33:1800

    CAS  Google Scholar 

  • Genchi GG, Ciofani G, Liakos I, Ricotti L, Ceseracciu L, Athanassiou A, Mazzolai B, Menciassi A, Mattoli V (2013) Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Colloids Surf B: Biointerfaces 105:144

    CAS  PubMed  Google Scholar 

  • Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2(5):439–449

    Google Scholar 

  • Glisoni RJ, García-Fernández MJ, Pino M, Gutkind G, Moglioni AG, Alvarez-Lorenzo C, Concheiro A, Sosnik A (2013) β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93(2):449–457

    CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    CAS  PubMed  Google Scholar 

  • Grieger KD, Linkov I, Hansen SF, Baun A (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6(2):196–212

    PubMed  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    CAS  PubMed  Google Scholar 

  • Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4(3):405–418

    CAS  PubMed  Google Scholar 

  • Guarino V, Causa F, Taddei P, di Foggia M, Ciapetti G, Martini D, Fagnano C, Baldini N, Ambrosio L (2008) Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials 29:3662

    CAS  PubMed  Google Scholar 

  • Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64(12):5042–5045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5(2):183–188

    CAS  PubMed  Google Scholar 

  • Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147(Pt 12):3393–3402

    CAS  PubMed  Google Scholar 

  • Gurdon JB et al (1994) Activin signaling and response to a morphogen gradient. Nature 371(6497):487–492

    CAS  PubMed  Google Scholar 

  • Hacker MC, Mikos AG (2006) Trends in tissue engineering research. Tissue Eng 12:2049

    CAS  PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    CAS  PubMed  Google Scholar 

  • Hansen SF, Baun A (2012) When enough is enough. Nat Nanotechnol 7(7):409–411

    CAS  PubMed  Google Scholar 

  • Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    CAS  PubMed  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983

    CAS  PubMed  Google Scholar 

  • Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ (2006) The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 92(2):456–463

    CAS  PubMed  Google Scholar 

  • Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124

    CAS  PubMed  Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    CAS  PubMed  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750

    CAS  PubMed  Google Scholar 

  • Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92(1):37–42

    CAS  PubMed  Google Scholar 

  • Jack KS, Velayudhan S, Luckman P, Trau M, Grøndahl L, Cooper-White J (2009) The fabrication and characterization of biodegradable HA/PHBV nanoparticle–polymer composite scaffolds. Acta Biomater 5:2657

    CAS  PubMed  Google Scholar 

  • Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10:934–943

    CAS  PubMed  Google Scholar 

  • Jin G, Prabhakaranb MP, Kaib D, Ramakrishnaa S (2013) Controlled release of multiple epidermal induction factors through core–shell nanofibers for skin regeneration. Eur J Pharm Biopharm 85(3):689–698

    CAS  PubMed  Google Scholar 

  • Johnson DW, Sherborne C, Didsbury MP, Pateman C, Cameron NR, Claeyssens F (2013) Macrostructuring of emulsion-templated porous polymers by 3D laser patterning. Adv Mater 25:3178

    CAS  PubMed  Google Scholar 

  • Jover J, Bosque R, Sales J (2008) A comparison of the binding affinity of the common amino acids with different metal cations. Dalton Trans 45:6441–6453

    PubMed  Google Scholar 

  • Jover J, Bosque R, Sales J (2009) Quantitative structure-property relationship estimation of cation binding affinity of the common amino acids. J Phys Chem A 113(15):3703–3708

    CAS  PubMed  Google Scholar 

  • Joy A, Cohen DM, Luk A, Anim-Danso E, Chen C, Kohn J (2011) Control of surface chemistry, substrate stiffness, and cell function in a novel terpolymer methacrylate library. Langmuir 27:1891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474

    CAS  PubMed  Google Scholar 

  • Kasuga NC, Yoshikawa R, Sakai Y, Nomiya K (2012) Syntheses, structures, and antimicrobial activities of remarkably light-stable and water-soluble silver complexes with amino acid derivatives, silver(I) N-acetylmethioninates. Inorg Chem 51(3):1640–1647

    CAS  PubMed  Google Scholar 

  • Katz E, Streuli CH (2007) The extracellular matrix as an adhesion checkpoint for mammary epithelial function. Int J Biochem Cell Biol 39(4):715–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keselowsky BG, Collard DM, Garcia AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 102:5953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TG, Chung HJ, Park TG (2008a) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4:1611

    CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG (2008b) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18(8):1482–1484

    CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242

    CAS  PubMed  Google Scholar 

  • Kim HJ, Park IK, Kim JH, Cho CS, Kim MS (2012) Gas foaming fabrication of porous biphasic calcium phosphate for bone regeneration. Tissue Eng Regen Med 9:63

    CAS  Google Scholar 

  • Klasen HJ (2000a) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2):131–138

    CAS  PubMed  Google Scholar 

  • Klasen HJ (2000b) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130

    CAS  PubMed  Google Scholar 

  • Kong HJ, Mooney DJ (2007) Microenvironmental regulation of biomacromolecular therapies. Nat Rev Drug Discov 6(6):455–463

    CAS  PubMed  Google Scholar 

  • Kuijpers AJ, van Wachem PB, van Luyn MJA, Brouwer LA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vitro and in vivo evaluation of gelatin-chondroitin sulphate hydrogels for controlled release of antibacterial proteins. Biomaterials 21(17):1763–1772

    CAS  PubMed  Google Scholar 

  • Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7(3):236–241

    CAS  PubMed  Google Scholar 

  • Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61(12):1020–1032

    CAS  PubMed  Google Scholar 

  • Lee E-J, Teng S-H, Jang T-S, Wang P, Yook S-W, Kim H-E, Koh Y-H (2010) Nanostructured poly(e-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomater 6:3557

    CAS  PubMed  Google Scholar 

  • Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim DI, Lee H, Cho S-W (2013) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 14(6):2004–2013

    CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    CAS  PubMed  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12 Suppl):S122–S129

    CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24(1):135–141

    CAS  PubMed  Google Scholar 

  • Liakos I, Rizzello L, Bayer IS, Pompa PP, Cingolani R, Athanassiou A (2013) Controlled antiseptic release by alginate polymer films and beads. Carbohydr Polym 92(1):176–183

    CAS  PubMed  Google Scholar 

  • Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A (2014) All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 463(2):137–145

    CAS  PubMed  Google Scholar 

  • Liang HY, Wang WZ, Huang YZ, Zhang SP, Wei H, Xu HX (2010) Controlled Synthesis of Uniform Silver Nanospheres. J Phys Chem C 114(16):7427–7431

    CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    CAS  PubMed  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175

    CAS  PubMed  Google Scholar 

  • Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S-J, Kau Y-C, Chou C-Y, Chen J-K, Wu R-C, Yeh W-L (2010a) Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 355:53–59

    CAS  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010b) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lourenço BN, Marchioli G, Song W, Reis RL, van Blitterswijk CA, Karperien M, van Apeldoorn A, Mano JF (2012) Wettability influences cell behavior on superhydrophobic surfaces with different topographies. Biointerphases 7:46

    PubMed  Google Scholar 

  • Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA (2008) PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials 29(36):4800–4807

    CAS  PubMed  Google Scholar 

  • Malmsten M (2011) Antimicrobial and antiviral hydrogel. Soft Matter 7:8725–8736. doi:10.1039/C1SM05809F

    CAS  Google Scholar 

  • Mandoli C, Mecheri B, Forte G, Pagliari F, Pagliari S, Carotenuto F, Fiaccavento R, Rinaldi A, Di Nardo P, Licoccia S, Traversa E (2010) Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds. Macromol Biosci 10:127

    CAS  PubMed  Google Scholar 

  • Mazzitelli S, Pagano C, Giusepponi D, Nastruzzi C, Perioli L (2013) Hydrogel blends with adjustable properties as patches for transdermal delivery. Int J Pharm 454(1):47–57

    CAS  PubMed  Google Scholar 

  • Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ (2012) Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 64:1257–1276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296(5567):519–522

    CAS  PubMed  Google Scholar 

  • Milionis A, Martiradonna L, Anyfantis GC, Cozzoli PD, Bayer IS, Fragouli D, Athanassiou A (2013) Control of the water adhesion on hydrophobic micropillars by spray coating technique. Colloid Polym Sci 291:401

    CAS  Google Scholar 

  • Milionis A, Fragouli D, Martiradonna L, Anyfantis GC, Cozzoli PD, Bayer IS, Athanassiou A (2014) Spatially controlled surface energy traps on superhydrophobic surfaces. ACS Appl Mater Interfaces 6:1036–1043

    CAS  PubMed  Google Scholar 

  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5):542–549

    CAS  PubMed  Google Scholar 

  • Moffa M, Polini A, Sciancalepore AG, Persano L, Mele E, Passione LG, Potente G, Pisignano D (2013) Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter 9:5529

    CAS  Google Scholar 

  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011a) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    CAS  PubMed  Google Scholar 

  • Monopoli MP, Bombelli FB, Dawson KA (2011b) Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol 6(1):11–12

    CAS  PubMed  Google Scholar 

  • Morais DS, Rodrigues MA, Lopes MA, Coelho MJ, Maurício AC, Gomes R, Amorim I, Ferraz MP, Santos JD, Botelho CM (2013) Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J Mater Sci Mater Med 24(9):2145–2155

    CAS  PubMed  Google Scholar 

  • Morens DM, Folkers GK, Fauci AS (2010) The challenge of emerging and re-emerging infectious diseases (vol 430, pg 242, 2004). Nature 463(7277):122

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    CAS  PubMed  Google Scholar 

  • Mou Z-L, Duan L-M, Qi X-N, Zhang Z-Q (2013) Preparation of silk fibroin/collagen/hydroxyapatite composite scaffold by particulate leaching method. Mater Lett 105:189

    CAS  Google Scholar 

  • Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164–1183

    CAS  PubMed  Google Scholar 

  • Nandakumar A, Fernandes H, de Boer J, Moroni L, Habibovic P, van Blitterswijk CA (2010) Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration. Macromol Biosci 10:1365

    CAS  PubMed  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    CAS  PubMed  Google Scholar 

  • Neibert K, Gopishetty V, Grigoryev A, Tokarev I, Al-Hajaj N, Vorstenbosch J, Philip A, Minko S, Maysinger D (2012) Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv Healthc Mater 1(5):621–630

    CAS  PubMed  Google Scholar 

  • Ng R, Zhang X, Liu N, Yang ST (2009) Modifications of nonwoven polyethylene terephthalate fibrous matrices via NaOH hydrolysis: effects on pore size, fiber diameter, cell seeding and proliferation. Process Biochem 44:992

    CAS  Google Scholar 

  • Ng R, Zang R, Yang KK, Liu N, Yang S-T (2012) Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RCS Adv 2:10110

    CAS  Google Scholar 

  • Nitanan T, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, Opanasopit P (2013) Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. Int J Pharm 448(1):71–78

    CAS  PubMed  Google Scholar 

  • Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M (2000) Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(-)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and ([Ag(Hpyrrld)]2)n in the solid state. Inorg Chem 39(15):3301–3311

    CAS  PubMed  Google Scholar 

  • Notin L, Viton C, Lucas J-M, Domard A (2006) Pseudo-dry-spinning of chitosan. Acta Biomater 2:297–311

    PubMed  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183

    CAS  PubMed  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31(1):50–59

    CAS  PubMed  Google Scholar 

  • Oliveira SM, Song W, Alves NM, Mano JF (2011) Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter 7:8932

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palchesko RN, Zhang L, Sun Y, Feinberg AW (2012) Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7:e51499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pamula E, Bacakova L, Filova E, Buczynska J, Dobrzynski P, Noskova L, Grausova L (2008) The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci Mater Med 19:425

    CAS  PubMed  Google Scholar 

  • Pamula E, Filová E, Bacáková L, Lisá V, Adamczyk D (2009) Resorbable polymeric scaffolds for bone tissue engineering. J Biomed Mater Res A 89A:432

    CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    CAS  PubMed  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340

    CAS  PubMed  Google Scholar 

  • Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24(3):872–878

    CAS  PubMed  Google Scholar 

  • Penchev H, Paneva D, Manolova N, Rashkov I (2009) Electrospun Hybrid nanofibers based on chitosan or N-carboxyethylchitosan and silver nanoparticles. Macromol Biosci 9:884–894

    CAS  PubMed  Google Scholar 

  • Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    CAS  Google Scholar 

  • Place ES, George JH, Williams CK, Stevens MM (2009a) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139

    CAS  PubMed  Google Scholar 

  • Place ES, Evans ND, Stevens MM (2009b) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470

    CAS  PubMed  Google Scholar 

  • Polini A, Scaglione S, Quarto R, Pisignano D (2013) Composite electrospun nanofibers for influencing stem cell fate. Methods Mol Biol 1058:25–40

    PubMed  Google Scholar 

  • Powers JH (2004) Antimicrobial drug development—the past, the present, and the future. Clin Microbiol Infect 10:23–31

    PubMed  Google Scholar 

  • Qin Y (2008) The gel swelling properties of alginate fibers and their applications in wound management. Polym Adv Technol 19:6–14

    CAS  Google Scholar 

  • Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149(5):995–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy PR, Varaprasad K, Sadiku R, Ramam K, Reddy GVS, Raju KM, Reddy N (2013) Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria. J Inorg Organomet Polym Mater 23(5):1054–1060

    CAS  Google Scholar 

  • Reynolds NP, Styan KE, Easton CD, Li Y, Waddington L, Lara C, Forsythe JS, Mezzenga R, Hartley PG, Muir BW (2013) Nanotopographic surfaces with defined surface chemistries from amyloid fibril networks can control cell attachment. Biomacromolecules 14:2305

    CAS  PubMed  Google Scholar 

  • Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotechnol 19(11):1029–1034

    CAS  PubMed  Google Scholar 

  • Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing—a review. J Mater Chem B 1:4531–4541

    CAS  Google Scholar 

  • Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43(10):3933–3940

    CAS  PubMed  Google Scholar 

  • Rouet V, Hamma-Kourbali Y, Petit E, Panagopoulou P, Katsoris P, Barritault D, Caruelle JP, Courty J (2005) A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J Biol Chem 280(38):32792–32800

    CAS  PubMed  Google Scholar 

  • Rujitanaroj P-o, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39, discussion 39–40

    CAS  PubMed  Google Scholar 

  • Saltzman WM, Olbricht WL (2002) Building drug delivery into tissue engineering. Nat Rev Drug Discov 1(3):177–186

    CAS  PubMed  Google Scholar 

  • Schmidt S, Madaboosi N, Uhlig K, Köhler D, Skirtach A, Duschl C, Möhwald H, Volodkin DV (2012) Control of cell adhesion by mechanical reinforcement of soft polyelectrolyte films with nanoparticles. Langmuir 28:7249

    CAS  PubMed  Google Scholar 

  • Schneider A, Wang XY, Kaplan DL, Garlick JA, Eglesa C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5(7):2570–2578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwaber MJ, De-Medina T, Carmeli Y (2004) Epidemiological interpretation of antibiotic resistance studies - what are we missing? Nat Rev Microbiol 2(12):979–983

    CAS  PubMed  Google Scholar 

  • Schwarz US, Safran SA (2013) Physics of adherent cells. Rev Mod Phys 85:1327

    CAS  Google Scholar 

  • Seyednejad H, Gawlitta D, Dhert WJA, van Nostrum CF, Vermonden T, Hennink WE (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7:1999

    CAS  PubMed  Google Scholar 

  • Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJA, Hennink WE (2012) In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials 33:4309

    CAS  PubMed  Google Scholar 

  • Sintubin L, De Gusseme B, Van der Meeren P, Pycke BF, Verstraete W, Boon N (2011) The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91(1):153–162

    CAS  PubMed  Google Scholar 

  • Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:392

    CAS  Google Scholar 

  • Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464

    CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182

    CAS  PubMed  Google Scholar 

  • Song B, Wu C, Chang J (2012a) Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats. J Biomed Mater Res B Appl Biomater 100(8):2178–2186

    PubMed  Google Scholar 

  • Song B, Wu C, Chang J (2012b) Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles. Acta Biomater 8(5):1901–1907

    CAS  PubMed  Google Scholar 

  • Spellberg B (2008) Dr. William H. Stewart: mistaken or maligned? Clin Infect Dis 47(2):294

    PubMed  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, Amer IDS (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164

    PubMed  Google Scholar 

  • Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci STKE 2002(119):e7

    Google Scholar 

  • Sue YM, Lee JY, Wang MC, Lin TK, Sung JM, Huang JJ (2001) Generalized argyria in two chronic hemodialysis patients. Am J Kidney Dis 37(5):1048–1051

    CAS  PubMed  Google Scholar 

  • Suganya S, Senthil Ram T, Lakshmi BS, Giridev VR (2011) Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J Appl Polym Sci 121(5):2893–2899

    CAS  Google Scholar 

  • Sun T, Qing G (2011) Biomimetic smart interface materials for biological applications. Adv Mater 23:H57

    CAS  PubMed  Google Scholar 

  • Sun W, Darling A, Starly B, Nam J (2004) Computer-aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47

    CAS  PubMed  Google Scholar 

  • Sun T, Qing G, Su B, Jiang L (2011) Functional biointerface materials inspired from nature. Chem Soc Rev 40:2909

    CAS  PubMed  Google Scholar 

  • Sušec M, Ligon SC, Stampfl J, Liska R, Krajnc P (2013) Hierarchically porous materials from layer-by-layer photopolymerization of high internal phase emulsions. Macromol Rapid Commun 34:938

    PubMed  Google Scholar 

  • Suwantong O, Ruktanonchai U, Supaphol P (2010) In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res A 94(4):1216–1225

    PubMed  Google Scholar 

  • Taipale J, KeskiOja J (1997) Growth factors in the extracellular matrix. FASEB J 11(1):51–59

    CAS  PubMed  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanabe Y, Jessell TM (1997) Diversity and pattern in the developing spinal cord (vol 274, pg 1115, 1996). Science 276(5309):21

    CAS  Google Scholar 

  • Teo W-E, He W, Ramakrishna S (2006) Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J 1(9):918–929

    CAS  PubMed  Google Scholar 

  • Torres-Giner S, Martinez-Abad A, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2012) Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater 14:B112–B122

    Google Scholar 

  • Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 10(6):1429–1435

    CAS  PubMed  Google Scholar 

  • Ueda E, Levkin PA (2013) Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater 25:1234

    CAS  PubMed  Google Scholar 

  • Upert G, Bouillere F, Wennemers H (2012) Oligoprolines as scaffolds for the formation of silver nanoparticles in defined sizes: correlating molecular and nanoscopic dimensions. Angew Chem Int Ed Engl 51(17):4231–4234

    CAS  PubMed  Google Scholar 

  • Uppal R, Ramaswamy GN, Arnold C, Goodband R, Wang Y (2011) Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J Biomed Mater Res B Appl Biomater 97(1):20–29

    PubMed  Google Scholar 

  • Üstündaǧ GC, Karaca E, Özbek S, ÇavuşoǦlu I (2010) In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate nanofibrous mat as wound dressing. Tekstil ve Konfeksiyon 20:290–298

    Google Scholar 

  • Uttayarat P, Jetawattana S, Suwanmala P, Eamsiri J, Tangthong T, Pongpat S (2012) Antimicrobial electrospun silk fibroin mats with silver nanoparticles for wound dressing application. Fiber Polym 13:999–1006

    CAS  Google Scholar 

  • van der Pol U, Mathieu L, Zeiter S, Bourban P-E, Zambelli P-Y, Pearce SG, Bouré LP, Pioletti DP (2010) Augmentation of bone defect healing using a new biocomposite scaffold: an in vivo study in sheep. Acta Biomater 6:3755

    PubMed  Google Scholar 

  • Van Vlierberghe S, Schacht E, Dubruel E (2011) Reversible gelatin-based hydrogels: finetuning of material properties. Eur Polym J 47(5):1039–1047

    Google Scholar 

  • Ventre M, Causa F, Netti PA (2012) Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J R Soc Interface 9(74):2017–2032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 30(6):440–446

    CAS  PubMed  Google Scholar 

  • Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin(R) stabilized silver nanoparticles. Nanotechnology 19(35):355707

    CAS  PubMed  Google Scholar 

  • Villafiorita Monteleone F, Caputo G, Canale C, Cozzoli PD, Cingolani R, Fragouli D, Athanassiou A (2010) Light-controlled directional liquid drop movement on TiO2 nanorods-based nanocomposite photopatterns. Langmuir 26:18557

    CAS  Google Scholar 

  • Voytik-Harbin SL, Brightman AO, Waisner BZ, Robinson JP, Lamar CH (1998) Small intestinal submucosa: a tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng 4:157

    Google Scholar 

  • Wadhera A, Fung M (2005) Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 11(1):12

    PubMed  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    CAS  PubMed  Google Scholar 

  • Wan LQ, Jiang J, Arnold DE, Guo XE, Lu HH, Mow VC (2008) Mow, Calcium concentration effects on the mechanical and biochemical properties of Chondrocyte-Alginate constructs. Cell Mol Bioeng 1(1):93–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007) Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 6(5):385–392

    CAS  PubMed  Google Scholar 

  • Wang C, Yan K-W, Lin Y-D, Hsieh PCH (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43(15):6389–6397

    CAS  Google Scholar 

  • Wang S, Zhang Y, Wang H, Dong Z (2011a) Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers. Int J Biol Macromol 48:345

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang CL, Zhang Q, Li P (2011b) Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomedicine 6:667–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18:3568

    CAS  Google Scholar 

  • Wei G, Ma PX (2009) Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials 30:6426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wennemers H (2012) Peptides as asymmetric catalysts and templates for the controlled formation of Ag nanoparticles. J Pept Sci 18(7):437–441

    CAS  PubMed  Google Scholar 

  • Wharram SE, Zhang X, Kaplan DL, McCarthy SP (2010) Electrospun silk material systems for wound healing. Macromol Biosci 10(3):246–257

    CAS  PubMed  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    CAS  PubMed  Google Scholar 

  • Wijekoon A, Fountas-Davis N, Leipzig ND (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9(3):5653–5664

    CAS  PubMed  Google Scholar 

  • Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K, Aziz S, Cardona C, Hammond WP, Savidge GF, Rafii S, Sobel M (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91(1):25–31

    CAS  PubMed  Google Scholar 

  • Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216

    CAS  Google Scholar 

  • Xiaoling F, Wang H (2012) Spatial arrangement of polycaprolactone/collagen nanofiber scaffolds regulates the wound healing related behaviors of human adipose stromal cells. Tissue Eng Part A 18(5–6):631–642

    Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008

    CAS  PubMed  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    CAS  PubMed  Google Scholar 

  • Xu X, Zhong W, Zhou S, Trajtman A, Alfa M (2010) Electrospun PEG-PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci 118(1):588–595

    CAS  Google Scholar 

  • Yan L, Si S, Chen Y, Yuan T, Fan H, Yao Y, Zhang Q (2011) Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fiber Polym 12(2):207–213

    CAS  Google Scholar 

  • Yang C, Wu X, Zhao Y, Xu L, Wei S (2011) Nanofibrous scaffold prepared by electrospinning of poly(vinyl alcohol)/gelatin aqueous solutions. J Appl Polym Sci 121(5):3047–3055

    CAS  Google Scholar 

  • Yang Y, Xia T, Chen F, Wei W, Liu C, He S, Li X (2012) Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 9(1):48–58

    PubMed  Google Scholar 

  • Zelzer M, Majani R, Bradley JW, Rose FRAJ, Davies MC, Alexander MR (2008) Investigation of cell–surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29:172

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16:933–946

    CAS  PubMed  Google Scholar 

  • Zook JM, Long SE, Cleveland D, Geronimo CL, MacCuspie RI (2011) Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 401(6):1993–2002

    CAS  PubMed  Google Scholar 

  • Zouani OF, Chollet C, Guillotin B, Durrieu MC (2010) Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31(32):8245–8253

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassia Athanassiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Athanassiou, A., Fragouli, D., Bayer, I., Netti, P., Rizzello, L., Pompa, P.P. (2014). Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues. In: Cingolani, R. (eds) Bioinspired Approaches for Human-Centric Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-04924-3_2

Download citation

Publish with us

Policies and ethics