Advertisement

Two Double-Exponential Gaps for Automata with a Limited Pushdown

  • Zuzana Bednárová
  • Viliam Geffert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

We shall consider nondeterministic and deterministic automata equipped with a limited pushdown (constant height npdas and dpdas) as well as their two-way versions (constant height 2npdas and 2dpdas).We show two double-exponential gaps for these devices, namely, (i) for complementing constant height one-way npdas and (ii) for converting 2npdas or 2dpdas into one-way devices.

Keywords

pushdown automata finite state automata regular languages descriptional complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean operations on constant height deterministic pushdown automata. Theoret. Comput. Sci. 449, 23–36 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Geffert, V., Bednárová, Z., Mereghetti, C., Palano, B.: Boolean language operations on nondeterministic automata with a pushdown of constant height. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 100–111. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Chomsky, N.: Context-free grammars and pushdown storage. Quarterly Progress Report 65, Research Lab. Electronics. MIT, Cambridge, Massachusetts (1962)Google Scholar
  4. 4.
    Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular languages by automata and regular expressions. Inform. & Comput. 208, 385–394 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gruber, H., Holzer, M.: Language operations with regular expressions of polynomial size. Theoret. Comput. Sci. 410, 3281–3289 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley (1978)Google Scholar
  7. 7.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Prentice Hall (2007)Google Scholar
  9. 9.
    Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free languages. Acta Inform. 45, 177–191 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Schützenberger, M.: On context-free languages and pushdown automata. Inform.& Control 6, 246–264 (1963)CrossRefzbMATHGoogle Scholar
  12. 12.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zuzana Bednárová
    • 1
  • Viliam Geffert
    • 1
  1. 1.Dept. Comput. Sci.P. J. Šafárik UniversityKošiceSlovakia

Personalised recommendations