Advertisement

Formulae for Polyominoes on Twisted Cylinders

  • Gadi Aleksandrowicz
  • Andrei Asinowski
  • Gill Barequet
  • Ronnie Barequet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

Polyominoes are edge-connected sets of cells on the square lattice ℤ2. We investigate polyominoes on a square lattice embedded on so-called twisted cylinders of a bounded width (perimeter) w. We prove that the limit growth rate of polyominoes of the latter type approaches that of polyominoes of the former type, as w tends to infinity. We also prove that for any fixed value of w, the formula enumerating polyominoes on a twisted cylinder of width w satisfies a linear recurrence whose complexity grows exponentially with w. By building the finite automaton that “grows” polyominoes on the twisted cylinder, we obtain the prefix of the sequence enumerating these polyominoes. Then, we recover the recurrence formula by using the Berlekamp-Massey algorithm.

Keywords

Recurrence formula transfer matrix generating function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barequet, G.: Recurrence data for polyominoes on twisted cylinders, http://www.cs.technion.ac.il/~barequet/twisted/
  2. 2.
    Barequet, G., Moffie, M.: On the complexity of Jensen’s algorithm for counting fixed polyominoes. J. Discrete Algorithms 5, 348–355 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barequet, G., Moffie, M., Ribó, A., Rote, G.: Counting polyominoes on twisted cylinders. Integers 6, #A22 (2006)Google Scholar
  4. 4.
    Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of Padé approximant. J. Algorithms 1, 259–295 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gaunt, D.S., Sykes, M.F., Ruskin, H.: Percolation processes in d-dimensions. J. Phys. A—Math. Gen. 9, 1899–1911 (1976)CrossRefGoogle Scholar
  6. 6.
    Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102, 865–881 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Jensen, I.: Counting polyominoes: A parallel implementation for cluster computing. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS, vol. 2659, pp. 203–212. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Klarner, D.A.: Cell growth problems. Can. J. Math. 19, 851–863 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Klarner, D.A., Rivest, R.L.: A procedure for improving the upper bound for the number of n-ominoes. Can. J. Math. 25, 585–602 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Madras, N.: A pattern theorem for lattice clusters. Ann. Comb. 3, 357–384 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE T. Inf. Theory 15, 122–127 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Reeds, J.A., Sloane, N.J.A.: Shift-register synthesis (modulo m). SIAM J. Comput. 14, 505–513 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Stanley, R.: Enumerative Combinatorics, I. Cambridge University Press (1997)Google Scholar
  14. 14.
    Wynn, P.: On a device for computing the e m(S n) transformation. Math. Tables and other Aids to Computation 10, 91–96 (1956)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gadi Aleksandrowicz
    • 1
  • Andrei Asinowski
    • 2
  • Gill Barequet
    • 1
  • Ronnie Barequet
    • 3
  1. 1.Dept. of Computer ScienceTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany
  3. 3.Dept. of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations