Probabilistic ω-Regular Expressions

  • Thomas Weidner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


We introduce probabilistic ω-regular expressions which are an extension to classical regular expressions with semantics taking probabilities into account. The main result states that probabilistic ω-regular expressions are expressively equivalent to probabilistic Muller-automata. To obtain better decidability properties we introduce a subclass of our expressions with decidable emptiness and approximation problem.


Regular Language Strongly Connect Component Probabilistic Automaton Main Result State Undecidability Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Grösser, M.: Recognizing ω-regular languages with probabilistic automata. In: Proc. LICS, pp. 137–146. IEEE (2005)Google Scholar
  2. 2.
    Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: A probabilistic kleene theorem. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 400–415. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Int. Congress for Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)Google Scholar
  5. 5.
    Chadha, R., Sistla, A.P., Viswanathan, M.: Power of randomization in automata on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 229–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Chadha, R., Sistla, A.P., Viswanathan, M.: Probabilistic büchi automata with non-extremal acceptance thresholds. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 103–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.: Probabilistic automata on infinite words: Decidability and undecidability results. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 1–16. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Tracol, M.: Decidable problems for probabilistic automata on infinite words. In: LICS, pp. 185–194. IEEE Computer Society (2012)Google Scholar
  10. 10.
    Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel composition via distributed scheduling. TCS 365(1-2), 83–108 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ésik, Z., Kuich, W.: Finite automata. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata. EATCS Monographs, pp. 69–104. Springer (2009)Google Scholar
  12. 12.
    Fijalkow, N., Gimbert, H., Oualhadj, Y.: Deciding the value 1 problem for probabilistic leaktight automata. In: LICS, pp. 295–304. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Giammarresi, D., Montalbano, R.: Deterministic generalized automata. TCS 215(1-22), 191–208 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, Mccarthy (eds.) Automata Studies, pp. 3–41. Princeton Univ. Press (1956)Google Scholar
  15. 15.
    Klenke, A.: Probability Theory: A Comprehensive Course. Springer (December 2007)Google Scholar
  16. 16.
    Kuich, W., Rahonis, G.: Fuzzy regular languages over finite and infinite words. Fuzzy Sets and Systems 157(11), 1532–1549 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147(1-2), 5–34 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mora-Lpez, L., Morales, R., Sidrach de Cardona, M., Triguero, F.: Probabilistic finite automata and randomness in nature: a new approach in the modelling and prediction of climatic parameters. In: Proc. International Environmental Modelling and Software Congress, pp. 78–83 (2002)Google Scholar
  19. 19.
    Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)CrossRefzbMATHGoogle Scholar
  20. 20.
    Ron, D., Singer, Y., Tishby, N.: The power of amnesia: Learning probabilistic automata with variable memory length. Machine Learning 25, 117–149 (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schützenberger, M.P.: On the definition of a family of automata. Information and Control 4(2-3), 245–270 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tracol, M., Baier, C., Größer, M.: Recurrence and transience for probabilistic automata. In: FSTTCS, vol. 4, pp. 395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar
  23. 23.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: Foundations of Computer Science, pp. 327–338 (1985)Google Scholar
  24. 24.
    Weidner, T.: Probabilistic automata and probabilistic logic. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 813–824. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Weidner
    • 1
  1. 1.Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations