Complexity of a Problem Concerning Reset Words for Eulerian Binary Automata

  • Vojtěch Vorel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


A word is called a reset word for a deterministic finite automaton if it maps all states of the automaton to one state. Deciding about the existence of a reset word of given length for a given automaton is known to be a NP-complete problem. We prove that it remains NP-complete even if restricted on Eulerian automata over the binary alphabet, as it has been conjectured by Martyugin (2011).


Test Column Part Level Deterministic Finite Automaton Type Clause Binary Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964)zbMATHGoogle Scholar
  2. 2.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500–510 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Martyugin, P.: Complexity of problems concerning reset words for some partial cases of automata. Acta Cybern. 19(2), 517–536 (2009)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Martyugin, P.: Complexity of problems concerning reset words for cyclic and eulerian automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 238–249. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Steinberg, B.: The Černý conjecture for one-cluster automata with prime length cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vojtěch Vorel
    • 1
  1. 1.Charles University in PragueCzech Republic

Personalised recommendations