Weight-Reducing Hennie Machines and Their Descriptional Complexity

  • Daniel Průša
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


We present a constructive variant of the Hennie machine. It is demonstrated how it can facilitate the design of finite-state machines. We focus on the deterministic version of the model and study its descriptional complexity. The model’s succinctness is compared with common devices that include the nondeterministic finite automaton, two-way finite automaton and pebble automaton.


Finite automata two-way automata Hennie machine descriptional complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birget, J.C.: State-complexity of finite-state devices, state compressibility and incompressibility. Mathematical Systems Theory 26(3), 237–269 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Durak, B.: Two-way finite automata with a write-once track. J. Autom. Lang. Comb. 12(1), 97–115 (2007)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Globerman, N., Harel, D.: Complexity results for two-way and multi-pebble automata and their logics. Theoretical Computer Science 169, 161–184 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234 (2002)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Hartmanis, J.: Computational complexity of one-tape Turing machine computations. J. ACM 15(2), 325–339 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hennie, F.: One-tape, off-line Turing machine computations. Information and Control 8(6), 553–578 (1965)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)Google Scholar
  9. 9.
    Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  10. 10.
    Průša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Radó, T.: On non-computable functions. Bell System Technical Journal 41(3), 877–884 (1962)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–17 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, New York, NY, USA, pp. 275–286 (1978)Google Scholar
  14. 14.
    Shannon, C.E.: A universal Turing machine with two internal states. Annals of Mathematics Studies 34, 157–165 (1956)MathSciNetGoogle Scholar
  15. 15.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Průša
    • 1
  1. 1.Faculty of Electrical EngineeringCzech Technical UniversityPrague 2Czech Republic

Personalised recommendations