Advertisement

Extended Two-Way Ordered Restarting Automata for Picture Languages

  • Friedrich Otto
  • František Mráz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

We introduce a two-dimensional variant of the deterministic restarting automaton for processing rectangular pictures. Our device has a window of size three-by-three, in a rewrite step it can only replace the symbol in the central position of its window by a symbol that is smaller with respect to a fixed ordering on the tape alphabet, and it can only perform (extended) move-right and move-down steps. This automaton is strictly more expressive than the deterministic Sgraffito automaton, but its word problem can still be solved in polynomial time, and when restricted to one-dimensional input, it only accepts the regular languages.

Keywords

restarting automaton ordered rewriting picture language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Proc. 8th Annual Symposium on Switching and Automata Theory (SWAT 1967), pp. 155–160. IEEE Computer Society, Washington, DC (1967)Google Scholar
  3. 3.
    Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recognizable picture languages. In: Loos, R., Fazekas, S., Martin-Vide, C. (eds.) LATA 2007, Preproc., pp. 175–186. Report 35/07, Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2007)Google Scholar
  4. 4.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. International J. of Pattern Recognition and Artificial Intelligence 6, 241–256 (1992)CrossRefGoogle Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, New York (1997)CrossRefGoogle Scholar
  6. 6.
    Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite-state automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns. Journal of Statistical Physics 91, 909–951 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert, V., Preneel, B., Rovan, B., Stuller, J., Tjoa, A. (eds.) SOFSEM 2014. LNCS. Springer, Heidelberg (to appear, 2014)Google Scholar
  10. 10.
    Průša, D., Mráz, F.: Restarting tiling automata. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 289–300. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Průša, D., Mráz, F.: Two-dimensional sgraffito automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 251–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Průša, D., Mráz, F., Otto, F.: Comparing two-dimensional one-marker automata to sgraffito automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 268–279. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Průša, D., Mráz, F., Otto, F.: New results on deterministic sgraffito automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 409–419. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Friedrich Otto
    • 1
  • František Mráz
    • 2
  1. 1.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPrague 1Czech Republic

Personalised recommendations