Advertisement

Expressiveness of Dynamic Networks of Timed Petri Nets

  • María Martos-Salgado
  • Fernando Rosa-Velardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

We study dynamic networks of infinite-state timed processes, where each process is a Petri net carrying a single real valued clock. We compare their expressiveness with other models within the class of Well-Structured Transition Systems, using coverability languages. We prove that unbounded places are a strict resource, meaning that extra unbounded places provides (strictly) with extra expressiveness. Also, we prove that if no unbounded places are allowed, then the obtained model is equivalent to Timed Petri nets. We conclude that dynamic networks of Timed Petri Nets are strictly more expressive than Timed Petri Nets.

Keywords

Transition System Dynamic Network Label Transition System Coverability Language Counting Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inf. Comput 160(1-2), 109–127 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Abdulla, P.A., Delzanno, G., Begin, L.V.: A classification of the expressive power of well-structured transition systems. Inf. Comput 209(3), 248–279 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes (extended abstract). In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bonnet, R., Finkel, A., Haddad, S., Rosa-Velardo, F.: Ordinal theory for expressiveness of well structured transition systems. Inf. Comput. (2012)Google Scholar
  6. 6.
    Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition time Petri nets. Fundam. Inform. 88(3), 225–249 (2008)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Delzanno, G., Rosa-Velardo, F.: On the coverability and reachability languages of monotonic extensions of petri nets. Theor. Comput. Sci. 467, 12–29 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2), 63–92 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Geeraerts, G., Raskin, J.-F., Begin, L.V.: Well-structured languages. Acta Inf. 44(3-4), 249–288 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of timed-arc Petri nets, data nets, and other enriched nets. IEEE LICS, 355–364 (2012)Google Scholar
  11. 11.
    de Jongh, D.H.J., Parikh, R.: Well partial orderings and hierarchies. Indagationes Mathematicae, 195–207 (1977)Google Scholar
  12. 12.
    Martos-Salgado, M., Rosa-Velardo, F.: Dynamic networks of infinite-state timed processes. Technical Report 9/13, UCM (2013), http://antares.sip.ucm.es/~frosa/
  13. 13.
    Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Schmidt, D.: Well-partial orderings and their maximal order types. Habilitationsscrift (1979)Google Scholar
  15. 15.
    Weiermann, A.: A computation of the maximal order type of the term ordering on finite multisets. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 488–498. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • María Martos-Salgado
    • 1
  • Fernando Rosa-Velardo
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridSpain

Personalised recommendations