Skip to main content

On SAT Representations of XOR Constraints

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

We consider the problem of finding good representations, via boolean conjunctive normal forms F (clause-sets), of systems S of XOR-constraints x 1 ⊕ … ⊕ x n  = ε, ε ∈ {0,1} (also called parity constraints), i.e., systems of linear equations over the two-element field. These representations are to be used as parts of SAT problems F * ⊃ F, such that F * has “good” properties for SAT solving. The basic quality criterion is “arc consistency”, that is, for every partial assignment φ to the variables of S, all assignments x i  = ε forced by φ are determined by unit-clause propagation on the result φ* F of the application. We show there is no arc-consistent representation of polynomial size for arbitrary S. The proof combines the basic method by Bessiere et al. 2009 ([2]) on the relation between monotone circuits and “consistency checkers”, adapted and simplified in the underlying report Gwynne et al. [10], with the lower bound on monotone circuits for monotone span programs in Babai et al. 1999 [1]. On the other side, our basic positive result is that computing an arc-consistent representation is fixed-parameter tractable in the number m of equations of S. To obtain stronger representations, instead of mere arc-consistency we consider the class \({\mathcal{PC}}\) of propagation-complete clause-sets, as introduced in Bordeaux et al. 2012 [4]. The stronger criterion is now \(F \in{\mathcal{PC}}\), which requires for all partial assignments, possibly involving also the auxiliary (new) variables in F, that forced assignments can be determined by unit-clause propagation. We analyse the basic translation, which for m = 1 lies in \({\mathcal{PC}}\), but fails badly so already for m = 2, and we show how to repair this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Combinatorica 19(3), 301–319 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions of global constraints. In: Twenty-First International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 412–418 (2009)

    Google Scholar 

  3. Biere, A., Heule, M.J., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  4. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the Data Encryption Standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  7. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) 15th European Conference on Artificial Intelligence (ECAI 2002), pp. 121–125. IOS Press (2002)

    Google Scholar 

  8. Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation completeness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Gwynne, M., Kullmann, O.: Generalising Unit-Refutation Completeness and SLUR via Nested Input Resolution. Journal of Automated Reasoning 52(1), 31–65 (2014), doi:10.1007/s10817-013-9275-8

    Article  MathSciNet  Google Scholar 

  10. Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. Tech. Rep. arXiv:1309.3060v4 [cs.CC], arXiv (December 2013)

    Google Scholar 

  11. Gwynne, M., Kullmann, O.: Trading inference effort versus size in CNF knowledge compilation. Tech. Rep. arXiv:1310.5746v2 [cs.CC], arXiv (November 2013)

    Google Scholar 

  12. Haanpää, H., Järvisalo, M., Kaski, P., Niemelä, I.: Hard satisfiable clause sets for benchmarking equivalence reasoning techniques. Journal of Satisfiability, Boolean Modeling and Computation 2, 27–46 (2006)

    MATH  Google Scholar 

  13. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, et al. (eds.) [3], ch. 11, pp. 339–401

    Google Scholar 

  14. Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of CNF’s based on short tree-like resolution proofs. Tech. Rep. TR99-041, Electronic Colloquium on Computational Complexity (ECCC) (October 1999)

    Google Scholar 

  15. Kullmann, O.: Upper and lower bounds on the complexity of generalised resolution and generalised constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence 40(3-4), 303–352 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kullmann, O.: Hardness measures and resolution lower bounds. Tech. Rep. arXiv:1310.7627v1 [cs.CC], arXiv (October 2013)

    Google Scholar 

  17. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning DPLL with parity reasoning. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI 2010 – 19th European Conference on Artificial Intelligence, pp. 21–26. IOS Press (2010)

    Google Scholar 

  18. Laitinen, T., Junttila, T., Niemelä, I.: Equivalence class based parity reasoning with DPLL(XOR). In: ICTAI 2011 – 23rd International Conference on Tools with Artificial Intelligence, pp. 649–658 (2011)

    Google Scholar 

  19. Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity constraints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Laitinen, T., Junttila, T., Niemelä, I.: Conflict-driven XOR-clause learning. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 383–396. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning SAT solvers with complete parity reasoning. In: ICTAI 2012 – 24th International Conference on Tools with Artificial Intelligence, pp. 65–72 (2012)

    Google Scholar 

  22. Laitinen, T., Junttila, T., Niemelä, I.: Simulating parity reasoning. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 568–583. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Information Processing Letters 76, 75–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier (2006)

    Google Scholar 

  25. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Seminars in Mathematics, vol. 8. V.A. Steklov Mathematical Institute, Leningrad (1968); English translation: Slisenko, A.O.(ed.) Studies in mathematics and mathematical logic, Part II, pp. 115–125 (1970)

    Google Scholar 

  27. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34, 209–219 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gwynne, M., Kullmann, O. (2014). On SAT Representations of XOR Constraints. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics