Skip to main content

Counting Models of Linear-Time Temporal Logic

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

We investigate the model counting problem for safety specifications expressed in linear-time temporal logic (LTL). Model counting has previously been studied for propositional logic; in planning, for example, propositional model counting is used to compute the plan’s robustness in an incomplete domain. Counting the models of an LTL formula opens up new applications in verification and synthesis. We distinguish word and tree models of an LTL formula. Word models are labeled sequences that satisfy the formula. Counting the number of word models can be used in model checking to determine the number of errors in a system. Tree models are labeled trees where every branch satisfies the formula. Counting the number of tree models can be used in synthesis to determine the number of implementations that satisfy a given formula. We present algorithms for the word and tree model counting problems, and compare these direct constructions to an indirect approach based on encodings into propositional logic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayardo, R.J., Schrag, R.: Using csp look-back techniques to solve real-world sat instances. In: AAAI/IAAI, pp. 203–208 (1997)

    Google Scholar 

  2. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481. IOS Press (2009)

    Google Scholar 

  3. Bloem, R.P., Gamauf, H.-J., Hofferek, G., Könighofer, B., Könighofer, R.: Synthesizing robust systems with RATSY. In: Association, O.P. (ed.) Proceedings First Workshop on Synthesis (SYNT 2012), vol. 84, pp. 47–53. Electronic Proceedings in Theoretical Computer Science (2012)

    Google Scholar 

  4. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond (1992)

    Google Scholar 

  6. Darwiche, A.: New advances in compiling cnf into decomposable negation normal form. In: ECAI, pp. 328–332 (2004)

    Google Scholar 

  7. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software Tools for Technology Transfer 15(5-6), 519–539 (2013)

    Article  Google Scholar 

  9. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 633–654. IOS Press, Amsterdam (2009), http://dblp.uni-trier.de/db/series/faia/faia185.html#GomesSS09

  10. Kuhtz, L., Finkbeiner, B.: LTL path checking is efficiently parallelizable. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 235–246. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Kuhtz, L., Finkbeiner, B.: Weak kripke structures and LTL. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 419–433. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kupferman, O., Lampert, R.: On the construction of fine automata for safety properties. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 110–124. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic boolean satisfiability. Journal of Automated Reasoning 27, 2001 (2000)

    MathSciNet  Google Scholar 

  14. Morwood, D., Bryce, D.: Evaluating temporal plans in incomplete domains. In: AAAI (2012)

    Google Scholar 

  15. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, DC (1977), http://dx.doi.org/10.1109/SFCS.1977.32

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Finkbeiner, B., Torfah, H. (2014). Counting Models of Linear-Time Temporal Logic. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics