Advertisement

Algebraic Tools for the Overlapping Tile Product

  • Etienne Dubourg
  • David Janin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

Overlapping tile automata and the associated notion of recognizability by means of (adequate) premorphisms in finite ordered monoids have recently been defined for coping with the collapse of classical recognizability in inverse monoids. In this paper, we investigate more in depth the associated algebraic tools that allow for a better understanding of the underlying mathematical theory. In particular, addressing the surprisingly difficult problem of language product, we eventually found some deep links with classical notions of inverse semigroup theory such as the notion of restricted product.

Keywords

Overlapping structures premorphisms Ehresmann monoids birooted trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial actions. Journal of Pure and Applied Algebra 216, 935–949 (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Dicky, A., Janin, D.: Embedding finite and infinite words into overlapping tiles. Tech. Rep. RR-1475-13, LaBRI, Université de Bordeaux, Bordeaux (2013)Google Scholar
  3. 3.
    Dicky, A., Janin, D.: Modélisation algébrique du diner des philosophes. Modélisation des Systèmes Réactifs (MSR). Journal Européen des Systèmes Automatisés (JESA) 47(1-2-3/2013) (November 2013)Google Scholar
  4. 4.
    Fountain, J.: Right PP monoids with central idempotents. Semigroup Forum 13, 229–237 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fountain, J., Gomes, G., Gould, V.: The free ample monoid. Int. Jour. of Algebra and Computation 19, 527–554 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hollings, C.D.: From right PP monoids to restriction semigroups: a survey. European Journal of Pure and Applied Mathematics 2(1), 21–57 (2009)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hollings, C.D.: The Ehresmann-Schein-Nambooripad Theorem and its successors. European Journal of Pure and Applied Mathematics 5(4), 414–450 (2012)MathSciNetGoogle Scholar
  8. 8.
    Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional overlapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 516–528. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Janin, D.: Algebras, automata and logic for languages of labeled birooted trees. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 312–323. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Janin, D.: Overlapping tile automata. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 431–443. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Janin, D., Berthaut, F., DeSainte-Catherine, M., Orlarey, Y., Salvati, S.: The T-calculus : towards a structured programming of (musical) time and space. In: Workshop on Functional Art, Music, Modeling and Design (FARM). ACM Press (2013)Google Scholar
  13. 13.
    Janin, D., Berthaut, F., DeSainteCatherine, M.: Multi-scale design of interactive music systems: the libTuiles experiment. In: Sound and Music Computing (SMC) (2013)Google Scholar
  14. 14.
    Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Comm. Math. Phys. 187, 115–157 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kellendonk, J., Lawson, M.V.: Tiling semigroups. Journal of Algebra 224(1), 140–150 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lawson, M.V.: Semigroups and ordered categories. I. the reduced case. Journal of Algebra 141(2), 422–462 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Lawson, M.V.: Inverse Semigroups: The theory of partial symmetries. World Scientific (1998)Google Scholar
  18. 18.
    Lawson, M.V.: McAlister semigroups. Journal of Algebra 202(1), 276–294 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Margolis, S.W., Meakin, J.C.: Inverse monoids, trees and context-free languages. Trans. Amer. Math. Soc. 335, 259–276 (1993)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Munn, W.D.: Free inverse semigroups. Proceeedings of the London Mathematical Society 29(3), 385–404 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Pietrich, M.: Inverse semigroups. Wiley (1984)Google Scholar
  22. 22.
    Pin, J.E.: Algebraic tools for the concatenation product. Theoretical Comp. Science 292(1), 317–342 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Scheiblich, H.E.: Free inverse semigroups. Semigroup Forum 4, 351–359 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Silva, P.V.: On free inverse monoid languages. ITA 30(4), 349–378 (1996)zbMATHGoogle Scholar
  25. 25.
    Thomas, W.: Handbook of Formal Languages. In: Languages, Automata, and Logic, ch. 7, vol. III, pp. 389–455. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Etienne Dubourg
    • 1
  • David Janin
    • 1
  1. 1.LaBRI UMR 5800 351, cours de la LibérationUniversité de BordeauxTalenceFrance

Personalised recommendations