Advertisement

(k,l)-Unambiguity and Quasi-Deterministic Structures: An Alternative for the Determinization

  • Pascal Caron
  • Marianne Flouret
  • Ludovic Mignot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)

Abstract

We focus on the family of (k,l)-unambiguous automata that encompasses the one of deterministic k-lookahead automata introduced by Han and Wood. We show that this family presents nice theoretical properties that allow us to compute quasi-deterministic structures. These structures are smaller than DFAs and can be used to solve the membership problem faster than NFAs.

Keywords

Regular Expression Regular Language Membership Problem Step Index Distinct Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bray, T., Paoli, J., Queen, C.S.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0, 4th edn. (2006), http://www.w3.org/TR/2006/REC-xml-20060816
  2. 2.
    Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inform. Comput. 140, 229–253 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brzozowski, J.A., Santean, N.: Predictable semiautomata. Theor. Comput. Sci. 410(35), 3236–3249 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Caron, P., Han, Y.-S., Mignot, L.: Generalized one-unambiguity. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 129–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Dang, Z., Ibarra, O.H., Su, J.: Composability of infinite-state activity automata. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 377–388. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Gerede, C.E., Hull, R., Ibarra, O.H., Su, J.: Automated composition of e-services: lookaheads. In: Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P. (eds.) ICSOC, pp. 252–262. ACM (2004)Google Scholar
  7. 7.
    Giammarresi, D., Montalbano, R., Wood, D.: Block-deterministic regular languages. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 184–196. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53 (1961)CrossRefGoogle Scholar
  9. 9.
    Han, Y.S., Wood, D.: Generalizations of 1-deterministic regular languages. Inf. Comput. 206(9-10), 1117–1125 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation, 3rd edn. Pearson Addison-Wesley, Upper Saddle River (2007)Google Scholar
  11. 11.
    Kohavi, Z.: Switching and Finite Automata Theory. Computer Science Series, 2nd edn. McGraw-Hill Higher Education (1990)Google Scholar
  12. 12.
    McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for automata. IEEE Transactions on Electronic Computers 9, 39–57 (1960)CrossRefGoogle Scholar
  13. 13.
    Ravikumar, B., Santean, N.: On the existence of lookahead delegators for nfa. Int. J. Found. Comput. Sci. 18(5), 949–973 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pascal Caron
    • 1
  • Marianne Flouret
    • 2
  • Ludovic Mignot
    • 1
  1. 1.LITISUniversité de RouenSaint-Étienne du Rouvray CedexFrance
  2. 2.LITISUniversité du HavreLe Havre CedexFrance

Personalised recommendations