On the Parikh Membership Problem for FAs, PDAs, and CMs

  • Oscar H. Ibarra
  • Bala Ravikumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


We consider the problem of determining if a string w belongs to a language L specified by an automaton (NFA, or PDA augmented by reversal-bounded counters, etc.) where the string w is specified by its Parikh vector. If the automaton (PDA augmented with reversal-bounded counters) is fixed and the Parikh vector is encoded in unary (binary), the problem is in DLOGSPACE (PTIME). When the automaton is part of the input and the Parikh vector is encoded in binary, we show the following results: if the input is an NFA accepting a letter-bounded language (i.e., \(\subseteq a_1^* \cdots a_k^*\) for some distinct symbols a 1, ..., a k ), the problem is in PTIME, but if the input is an NFA accepting a word-bounded language (i.e., \(\subseteq w_1^* \cdots w_m^*\) for some nonnull strings w 1, ..., w m ), it is NP-complete. The proofs involve solving systems of linear Diophantine equations with non-negative integer coefficients. As an application of the results, we present efficient algorithms for a generalization of a tiling problem posed recently by Dana Scott. Finally, we give a classification of the complexity of the membership problem for restricted classes of semilinear sets.


Parikh vector NFA counter machine reversal-bounded counters CFG Chomsky Normal Form bounded language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci. 8(3), 315–332 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Esparza, J.: Petri nets, commutative context-free grammars and basic parallel processes. Fundamenta Informaticae 30, 23–41 (1997)MathSciNetGoogle Scholar
  3. 3.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  4. 4.
    Golomb, S.W.: Polyominoes, 2nd edn. Princeton University Press (1994) ISBN 0-691-02444-8Google Scholar
  5. 5.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata, Languages and Computation. Addison-Wesley (1978)Google Scholar
  6. 6.
    Hyunh, T.-D.: The Complexity of semilinear sets. Elektr. Inform.-verarbeitung and Kybern. 6, 291–338 (1982)Google Scholar
  7. 7.
    Hyunh, T.-D.: Commutative Grammars: The Complexity of Uniform Word Problems. Information and Control 57, 21–39 (1983)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. Assoc. Comput. Mach. 25, 116–133 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ibarra, O.H., Ravikumar, B.: On sparseness and ambiguity for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)Google Scholar
  10. 10.
    Ibarra, O.H., Ravikumar, B.: On bounded languages and reversal-bounded automata. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 359–370. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Ibarra, O.H., Seki, S.: Characterizations of bounded semilinear languages by one-way and two-way deterministic machines. IJFCS 23, 1291–1306 (2012)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Ibarra, O.H., Yen, H.: On the Containment and Equivalence Problems for Two-way Transducers. Theoretical Computer Science 429, 155–163 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kopczynski, E., To, A.W.: Parikh Images of Grammars: Complexity and Applications. In: Proc. of 25th Annual IEEE Logic in Computer Science, pp. 80–89 (2010)Google Scholar
  14. 14.
    Lavado, G.J., Pighizzini, G., Seki, S.: Converting Nondeterministic Automata and Context-Free Grammars into Parikh Equivalent Deterministic Automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 284–295. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press (2001)Google Scholar
  16. 16.
    Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8, 583–548 (1983)Google Scholar
  17. 17.
    Lueker, G.S.: Two NP-Complete Problems in Nonnegative Integer Programming. Report No. 178, Computer Science Laboratory, Princeton University (1975)Google Scholar
  18. 18.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Scott, D.S.: Programming a combinatorial puzzle. Technical Report No. 1, Department of Electrical Engineering. Princeton University (1958)Google Scholar
  20. 20.
    To, A.W.: Parikh Images of Regular Languages: Complexity and Applications (2010) (unpublished manuscript)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Oscar H. Ibarra
    • 1
  • Bala Ravikumar
    • 2
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Computer & Engineering ScienceSonoma State UniversityRohnert ParkUSA

Personalised recommendations