On the List Update Problem with Advice

  • Joan Boyar
  • Shahin Kamali
  • Kim S. Larsen
  • Alejandro López-Ortiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8370)


We study the online list update problem under the advice model of computation. Under this model, an online algorithm receives partial information about the unknown parts of the input in the form of some bits of advice generated by a benevolent offline oracle. We show that advice of linear size is required and sufficient for a deterministic algorithm to achieve an optimal solution or even a competitive ratio better than 15/14. On the other hand, we show that surprisingly two bits of advice is sufficient to break the lower bound of 2 on the competitive ratio of deterministic online algorithms and achieve a deterministic algorithm with a competitive ratio of \(1.\bar{6}\). In this upper-bound argument, the bits of advice determine the algorithm with smaller cost among three classical online algorithms.


Competitive Ratio Online Algorithm Advice Model Deterministic Algorithm Aggregate Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Improved randomized on-line algorithms for the list update problem. SIAM J. Comput. 27(3), 682–693 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP algorithm for the list update problem. Inf. Proc. Lett. 56, 135–139 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ambühl, C.: Offline list update is NP-hard. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 42–51. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bentley, J.L., Sleator, D., Tarjan, R.E., Wei, V.K.: A locally adaptive data compression scheme. Commun. ACM 29, 320–330 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 493–505. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Böckenhauer, H., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  9. 9.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. CoRR abs/1212.4016 (2012)Google Scholar
  10. 10.
    Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem relevant information in input. RAIRO Inform. Theor. Appl. 43(3), 585–613 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theoret. Comput. Sci. 412(24), 2642–2656 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Irani, S.: Two results on the list update problem. Inf. Proc. Lett. 38, 301–306 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kamali, S., López-Ortiz, A.: A survey of algorithms and models for list update. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS, vol. 8066, pp. 251–266. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Komm, D., Královič, R.: Advice complexity and barely random algorithms. RAIRO Inform. Theor. Appl. 45(2), 249–267 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Reingold, N., Westbrook, J.: Optimum off-line algorithms for the list update problem. Tech. Rep. YALEU/DCS/TR-805, Yale University (1990)Google Scholar
  17. 17.
    Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. Inf. Proc. Lett. 60(2), 75–80 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms for the list update problem. Algorithmica 11, 15–32 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server problem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 198–210. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28, 202–208 (1985)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joan Boyar
    • 1
  • Shahin Kamali
    • 2
  • Kim S. Larsen
    • 1
  • Alejandro López-Ortiz
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations