Skip to main content

Time-Dependent Density-Functional Theory: Features and Challenges, with a Special View on Matter Under Extreme Conditions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 96))

Abstract

Time-dependent density-functional theory (TDDFT) is a universal quantum mechanical approach to the dynamical many-body problem which can be used to describe matter that is driven out of equilibrium by arbitrary time-dependent perturbations. TDDFT is often applied in the linear-response regime to obtain information about electronic excitations and spectral properties, but it also holds in the strongly nonlinear regime, where the perturbations compete with or even override the internal interactions that provide the structure and stability of matter. The purpose of this article is to give a brief overview of the basic formalism of TDDFT, and then to discuss the advantages, successes, and challenges of TDDFT for describing matter under extreme conditions of pressure and external fields. Two questions will be particularly emphasized: what are “easy” and what are “tough” problems for TDDFT (both from a fundamental and practical point of view), and how can TDDFT deal with dissipation? Some answers will be given, and needs and directions for future research will be pointed out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Other discussions at this IPAM workshop on warm dense matter involved thermal DFT [1], which is rooted in equilibrium quantum statistical mechanics, and hence is used for static systems at high temperature and pressure. At present, no rigorous extension of thermal DFT to time-dependent and/or non-equilibrium systems exists.

  2. 2.

    We assume here that all Kohn-Sham orbitals are either fully occupied or empty. For simplicity, we disregard the possibility of fractional orbital occupation numbers, which would be associated with degeneracies.

  3. 3.

    The RPA in linear response is equivalent to the time-dependent Hartree approximation, and has no dynamical xc contributions. It is not to be confused with the RPA in ground-state DFT, which is a method to calculate correlation energies using the so-called adiabatic connection fluctuation-dissipation approach [22].

  4. 4.

    Note that \(\mathbf{j}(\mathbf{r},t)\) is the physical current density. This is in contrast with ground-state CDFT, where the basic variable is the paramagnetic current density [57, 58].

References

  1. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  MathSciNet  Google Scholar 

  2. C.A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, Oxford/New York, 2012)

    Google Scholar 

  3. M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio (eds.), Fundamentals of Time-Dependent Density Functional Theory (Springer, Berlin, 2012)

    Google Scholar 

  4. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  Google Scholar 

  5. K. Harumiya, H. Kono, Y. Fujimura, I. Kawata, A. D. Bandrauk, Phys. Rev. A 66, 043403 (2002)

    Article  Google Scholar 

  6. N. Helbig, J.I. Fuks, M. Casula, M.J. Verstraete, M.A.L. Marques, I.V. Tokatly, A. Rubio, Phys. Rev. A 83, 032503 (2011)

    Article  Google Scholar 

  7. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  Google Scholar 

  8. E. Engel, R.M. Dreizler, Density Functional Theory: An Advanced Course (Springer, Berlin, 2012)

    Google Scholar 

  9. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  Google Scholar 

  10. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  11. R. van Leeuwen, Phys. Rev. Lett. 80, 1280 (1998)

    Article  Google Scholar 

  12. G. Vignale, Phys. Rev. A 77, 062511 (2008)

    Article  Google Scholar 

  13. M. Lein, S. Kümmel, Phys. Rev. Lett. 94, 143003 (2005)

    Article  Google Scholar 

  14. M.A.L. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comput. Phys. Commun. 151, 60 (2003)

    Article  Google Scholar 

  15. A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Stat. Sol. B 243, 2465 (2006)

    Article  Google Scholar 

  16. X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.A. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik, A. Rubio, M.A.L. Marques, J. Phys. Condens. Matter 24, 233202 (2011)

    Article  Google Scholar 

  17. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  18. E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, J. M. Soler, J. Phys. Condens. Matter 20, 064208 (2008)

    Article  Google Scholar 

  19. N.T. Maitra, F. Zhang, R.J. Cave, K. Burke, J. Chem. Phys. 120, 5932 (2004)

    Article  Google Scholar 

  20. C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006)

    Article  Google Scholar 

  21. D. Sangalli, P. Romaniello, G. Onida, A. Marini, J. Chem. Phys. 134, 034115 (2011)

    Article  Google Scholar 

  22. D.C. Langreth, J.P. Perdew, Phys. Rev. B 15, 2884 (1977)

    Article  Google Scholar 

  23. D.N. Fittinghoff, P.R. Bolton, B. Chang, K.C. Kulander, Phys. Rev. Lett. 69, 2642 (1992)

    Article  Google Scholar 

  24. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994)

    Article  Google Scholar 

  25. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  Google Scholar 

  26. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    Article  Google Scholar 

  27. R. Baer, E. Livshits, U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010)

    Article  Google Scholar 

  28. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  Google Scholar 

  29. Z. Yang, Y. Li, C.A. Ullrich, J. Chem. Phys. 137, 014513 (2012)

    Article  Google Scholar 

  30. Z. Yang, C.A. Ullrich, Phys. Rev. B 87, 195204 (2013)

    Article  Google Scholar 

  31. C.A. Ullrich, I.V. Tokatly, Phys. Rev. B 73, 235102 (2006)

    Article  Google Scholar 

  32. M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)

    Article  Google Scholar 

  33. M. Thiele, S. Kümmel, Phys. Rev. A 79, 052503 (2009)

    Article  Google Scholar 

  34. I.V. Tokatly, Phys. Rev. B 71, 165104 (2005); Ibid. 165105 (2005)

    Google Scholar 

  35. C.A. Ullrich, J. Mol. Struct. (Theochem) 501–502, 315 (2000)

    Article  Google Scholar 

  36. D. Lappas, R. van Leeuwen, J. Phys. B: At. Mol. Opt. Phys. 31, L249 (1998)

    Article  Google Scholar 

  37. F. Wilken, D. Bauer, Phys. Rev. Lett. 97, 203001 (2006)

    Article  Google Scholar 

  38. A. Pohl, P.-G. Reinhard, E. Suraud, Phys. Rev. Lett. 84, 5090 (2000)

    Article  Google Scholar 

  39. H.S. Nguyen, A.D. Bandrauk, C.A. Ullrich, Phys. Rev. A 69, 063415 (2004)

    Article  Google Scholar 

  40. V. Véniard, R. Taïeb, A. Maquet, Laser Phys. 13, 465 (2003)

    Google Scholar 

  41. N. Rohringer, S. Peter, J. Burgdörfer, Phys. Rev. A 74, 042512 (2004)

    Article  Google Scholar 

  42. L. Lam, P.M. Platzman, Phys. Rev. B 9, 5122 (1974)

    Article  Google Scholar 

  43. G.E.W. Bauer, Phys. Rev. B 27, 5912 (1983)

    Article  Google Scholar 

  44. F. Wilken, D. Bauer, Phys. Rev. A 76, 023409 (2007)

    Article  Google Scholar 

  45. Y. Li, C.A. Ullrich, Chem. Phys. 391, 157 (2011)

    Article  Google Scholar 

  46. T. Kreibich, E.K.U. Gross, Phys. Rev. Lett. 86, 2984 (2001)

    Article  Google Scholar 

  47. O. Butriy, H. Ebadi, P.L. de Boeij, R. van Leeuwen, E.K.U. Gross, Phys. Rev. A 76, 052514 (2007)

    Article  Google Scholar 

  48. T. Kreibich, R. van Leeuwen, E.K.U. Gross, Phys. Rev. A 78, 022501 (2008)

    Article  Google Scholar 

  49. J.C. Tully, J. Chem. Phys. 93, 1061 (1990)

    Article  Google Scholar 

  50. J.C. Tully, J. Chem. Phys. 137, 22A301 (2012)

    Google Scholar 

  51. P. Harrison, Quantum Wells, Wires and Dots (Wiley, Chichester, 2005)

    Book  Google Scholar 

  52. R. D’Agosta, G. Vignale, Phys. Rev. Lett. 96, 016405 (2006)

    Article  Google Scholar 

  53. E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 55, 2850 (1985); Erratum: Ibid. 57, 923 (1986)

    Google Scholar 

  54. J.F. Dobson, G.H. Harris, A.J. O’Connor, J. Phys. Condens. Matter 2, 6461 (1990)

    Article  Google Scholar 

  55. G. Vignale, in Time-Dependend Density Functional Theory, ed. by M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross. Lecture Notes in Physics, vol 706 (Springer, Berlin, 2006), p. 75

    Google Scholar 

  56. J.F. Dobson, M.J. Bünner, E.K.U. Gross, Phys. Rev. Lett. 79, 1905 (1997)

    Article  Google Scholar 

  57. G. Vignale, M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987)

    Article  Google Scholar 

  58. G. Vignale, M. Rasolt, Phys. Rev. B 37, 10685 (1988)

    Article  Google Scholar 

  59. S.K. Ghosh, A.K. Dhara, Phys. Rev. A 38, 1149 (1988)

    Article  Google Scholar 

  60. G. Vignale, Phys. Rev. B 70, 201102 (2004)

    Article  Google Scholar 

  61. G. Vignale, W. Kohn, Phys. Rev. Lett. 77, 2037 (1996)

    Article  Google Scholar 

  62. G. Vignale, C.A. Ullrich, S. Conti, Phys. Rev. Lett. 79, 4878 (1997)

    Article  Google Scholar 

  63. N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005)

    Article  Google Scholar 

  64. D. Roy, G. Vignale, M. Di Ventra, Phys. Rev. B 83, 075428 (2011)

    Article  Google Scholar 

  65. V.U. Nazarov, J.M. Pitarke, Y. Takada, G. Vignale, Y.-C. Chang, Phys. Rev. B 76, 205103 (2007)

    Article  Google Scholar 

  66. C.A. Ullrich, G. Vignale, Phys. Rev. B 58, 15756 (1998)

    Article  Google Scholar 

  67. C.A. Ullrich, G. Vignale, Phys. Rev. Lett. 87, 037402 (2001)

    Article  Google Scholar 

  68. H.O. Wijewardane, C.A. Ullrich, Phys. Rev. Lett. 95, 086401 (2005)

    Article  Google Scholar 

  69. C.A. Ullrich, J. Chem. Phys. 125, 234108 (2006)

    Article  Google Scholar 

  70. C.A. Ullrich, K. Burke, J. Chem. Phys. 121, 28 (2004)

    Article  Google Scholar 

  71. M. van Faassen, Int. J. Mod. Phys. B 20, 3419 (2006)

    Article  MATH  Google Scholar 

  72. J.A. Berger, P.L. de Boeij, R. van Leeuwen, Phys. Rev. B 75, 035116 (2007)

    Article  Google Scholar 

  73. R. D’Agosta, M.D. Ventra, G. Vignale, Phys. Rev. B 76, 035320 (2007)

    Article  Google Scholar 

  74. I. D’Amico and C.A. Ullrich, Phys. Rev. B 88, 155324 (2013)

    Article  Google Scholar 

  75. C.A. Ullrich, G. Vignale, Phys. Rev. B 65, 245102 (2002)

    Article  Google Scholar 

  76. F.V. Kyrychenko, C.A. Ullrich, J. Phys. Condens. Matter 21, 084202 (2009)

    Article  Google Scholar 

  77. F.V. Kyrychenko, C.A. Ullrich, Phys. Rev. B 83, 205206 (2011)

    Article  Google Scholar 

  78. K. Burke, R. Car, R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005)

    Article  Google Scholar 

  79. H.O. Wijewardane, C.A. Ullrich, Appl. Phys. Lett. 84, 3984 (2004)

    Article  Google Scholar 

  80. M. Di Ventra, R. D’Agosta, Phys. Rev. Lett. 98, 226403 (2007)

    Article  Google Scholar 

  81. R. D’Agosta, M. Di Ventra, Phys. Rev. B 78, 165105 (2008)

    Article  Google Scholar 

  82. H. Appel, M. Di Ventra, Phys. Rev. B 80, 212303 (2009)

    Article  Google Scholar 

  83. F. Biele, R. D’Agosta, J. Phys. Condens. Matter 24, 273201 (2012)

    Article  Google Scholar 

  84. J. Yuen-Zhou, D.G. Tempel, C.A. Rodríguez-Rosario, A. Aspuru-Guzik, Phys. Rev. Lett. 104, 043001 (2010)

    Article  Google Scholar 

  85. K. Yabana, S. Sugiyama, Y. Shinohara, T. Otobe, G.F. Bertsch, Phys. Rev. B 85, 045134 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Grant No. DMR-1005651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten A. Ullrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ullrich, C.A. (2014). Time-Dependent Density-Functional Theory: Features and Challenges, with a Special View on Matter Under Extreme Conditions. In: Graziani, F., Desjarlais, M., Redmer, R., Trickey, S. (eds) Frontiers and Challenges in Warm Dense Matter. Lecture Notes in Computational Science and Engineering, vol 96. Springer, Cham. https://doi.org/10.1007/978-3-319-04912-0_1

Download citation

Publish with us

Policies and ethics