Skip to main content

Bioactive Heterocyclic Natural Products from Actinomycetes Having Effects on Cancer-Related Signaling Pathways

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 99

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 99))

Abstract

During recent studies on the search for bioactive natural products from various types of organisms, the research group of the author has focused on targeting signaling molecules related to cancer-related biological pathways such as TRAIL (tumor necrosis factor (TNF)-related apoptosis inducing ligand), Wnt, and hedgehog signaling. For the screening studies conducted, natural product extracts including those of unexplored myxomycetes and marine nudibranches as well as medicinal plants collected from Thailand and Bangladesh have been evaluated. In addition, bioactive metabolites of actinomycete strains collected in several locations but mainly from the Chiba region of Japan were investigated, leading to the isolation of a series of new bioactive aromatic heterocyclic natural products, including izumiphenazines A-D from the cultured broth of Streptomyces sp. IFM 11204, izuminosides A-C from Streptomyces sp. IFM 11260, new pyranonaphthoquinones such as (+)-deacetylgriseusin A, yorophenazine, and yoropyrazone from Streptomyces sp. IFM 11307, and katorazone from Streptomyces sp. IFM 11299. The structures of these new compounds were elucidated on the basis of spectroscopic data interpretation, and their effects on cancer-related signaling pathways were evaluated. As a result, (+)-deacetylgriseusin A at 0.1 μM proved to be the most active in TRAIL-resistance overcoming activity, with 33 % decrease in cell viability in the presence of TRAIL (100 ng/cm3). Also isolated were fuzanins A-H, which are new carbamate- or pyridine-containing alkaloids, from Kitasatospora sp. IFM 10917, and a new tyrosine derivative, prenyltyrosine and its acetamide, with TRAIL-resistance overcoming activity from Streptomyces sp. IFM 10937. A screening study targeting enhancement of death-receptor 5 (DR5) promoter activity led to the identification of a known indole alkaloid, teleocidin A-2, which showed a 4.7-fold enhancement in DR5 promoter activity at 0.1 μM. Nonactins, griseoviridin, and nocardamines were isolated from the author’s collection of actinomycete strains using a screening procedure targeting Wnt signal inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ishibashi M, Arai MA (2009) Search for Bioactive Natural Products Targeting Cancer-Related Signaling Pathways. J Synth Org Chem Jpn 67:1094

    Article  CAS  Google Scholar 

  2. Ishibashi M, Arai MA (2012) Bioactive Natural Products from Myxomycetes Having Effects on Signaling Pathways. Heterocycles 85:1299

    Article  CAS  Google Scholar 

  3. Ishibashi M (2007) Study on Myxomycetes as a New Source of Bioactive Natural Products. Yakugaku Zasshi 127:1369

    Article  CAS  Google Scholar 

  4. Ishibashi M, Yamaguchi Y, Hirano YJ (2006) Bioactive Natural Products from Nudibranchs. In: Fingerman M, Nagabhushanam R (eds) Biomaterials from Aquatic and Terrestrial Organisms. Science Publishers Inc, Enfield, NH, USA, p 513

    Google Scholar 

  5. Ishibashi M, Toume K, Yamaguchi Y, Ohtsuki T (2004) Recent Advances in Search for Bioactive Natural Products from Medicinal Plants of North-East Thailand. In: S. G. Pandalai (ed) Recent Research Developments in Phytochemistry, vol 8. Research Signpost, Trivandrum, India, p 139

    Google Scholar 

  6. Ahmed F, Sadhu SK, Ishibashi M (2010) Search for Bioactive Natural Products from Medicinal Plants of Bangladesh. J Nat Med 85:393

    Article  Google Scholar 

  7. Hayakawa M, Nonomura H (1987) Humic Acid-Vitamin Agar, as a New Medium for the Selective Isolation of Soil Actinomycetes. J Ferment Technol 65:501

    Article  CAS  Google Scholar 

  8. Hirsch CF, Christensen DL (1983) Novel Method for Selective Isolation of Actinomycetes. Appl Environ Microbiol 46:925

    CAS  Google Scholar 

  9. Lindhagen E, Nygren P, Larsson R (2008) The Fluorometric Microculture Cytotoxicity Assay. Nat Protoc 3:1364

    Article  CAS  Google Scholar 

  10. Hellwig CT, Rehm M (2012) TRAIL Signaling and Synergy Mechanisms Used in TRAIL-Based Combination Therapies. Mol Cancer Ther 11:3

    Article  CAS  Google Scholar 

  11. Amm HM, Oliver PG, Lee CH, Li Y, Buchsbaum DJ (2011) Combined Modality Therapy with TRAIL or Agonistic Death Receptor Antibodies. Cancer Biol Ther 11:431

    Article  CAS  Google Scholar 

  12. Ishibashi M, Ohtsuki T (2008) Studies on Search for Bioactive Natural Products Targeting TRAIL Signaling Leading to Tumor Cell Apoptosis. Med Res Rev 28:688

    Article  CAS  Google Scholar 

  13. Kikuchi H, Ohtsuki T, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2007) Brandisianins A-F, Isoflavonoids Isolated from Millettia brandisiana in a Screening Program for Death-Receptor Expression Enhancement Activity. J Nat Prod 70:1910

    Article  CAS  Google Scholar 

  14. Kikuchi H, Ohtsuki T, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2009) Death Receptor 5 Targeting Activity-Guided Isolation of Isoflavones from Millettia brandisiana and Ardisia colorata and Evaluation of Ability to Induce TRAIL-Mediated Apoptosis. Bioorg Med Chem 17:1181

    Article  CAS  Google Scholar 

  15. Ohtsuki T, Hiraka T, Kikuchi H, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2009) Flavonoids from Eupatorium odoratum with Death Receptor 5 Promoter Enhancing Activity. Heterocycles 77:1379

    Article  CAS  Google Scholar 

  16. Ohtsuki T, Kikuchi H, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2009) Death Receptor 5 Promoter-Enhancing Compounds Isolated from Catimbium speciosum and Their Enhancement Effect on TRAIL-Induced Apoptosis. Bioorg Med Chem 17:6748

    Article  CAS  Google Scholar 

  17. Toume K, Nakazawa T, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2011) Cycloartane Triterpenes Isolated from Combretum quadrangulare in a Screening Program for Death-Receptor Expression Enhancing Activity. J Nat Prod 74:249

    Article  CAS  Google Scholar 

  18. Toume K, Nakazawa T, Tahmina H, Ohtsuki T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2012) Cycloartane Triterpenes and Ingol Diterpenes Isolated from Euphorbia neriifolia in a Screening Program for Death-Receptor Expression-Enhancing Activity. Planta Med 78:1370

    Article  CAS  Google Scholar 

  19. Miyagawa T, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M (2009) Cassaine Diterpenoid Dimers Isolated from Erythrophleum succirubrum with TRAIL-resistance Overcoming Activity. Tetrahedron Lett 50:4658

    Article  CAS  Google Scholar 

  20. Miyagawa T, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M (2009) Cardenolide Glycosides of Thevetia peruviana and Triterpenoid Saponins of Sapindus emarginatus as TRAIL Resistance-overcoming compounds. J Nat Prod 72:1507

    Article  CAS  Google Scholar 

  21. Ohtsuki T, Miyagawa T, Koyano T, Kowithayakorn T, Ishibashi M (2010) Isolation, Structure Elucidation, and TRAIL-resistance-overcoming Activity of Flavonoid Glycosides from Solanum verbascifolium. Phytochem Lett 3:88

    Article  CAS  Google Scholar 

  22. Ahmed F, Toume K, Sadhu, SK, Ohtsuki T, Arai MA, Ishibashi M (2010) Constituents of Amoora cucullata with TRAIL Resistance Overcoming Activity. Org Biomol Chem 8:3696

    Article  CAS  Google Scholar 

  23. Minakawa T, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2012) Eudesmane-type Sesquiterpenoid and Guaianolides from Kandelia candel in a Screening Program for Compounds to Overcome TRAIL-resistance. J Nat Prod 75:1431

    Article  CAS  Google Scholar 

  24. Clevers H, Nusse R (2012) Wnt/β-Catenin Signaling and Disease. Cell 149:1192

    Article  CAS  Google Scholar 

  25. Baron R, Kneissel M (2013) Wnt Signaling in Bone Homeostasis and Disease: from Human Mutation to Treatments. Nat Med 19:179

    Article  CAS  Google Scholar 

  26. Anastas JN, Moon RT (2013) Wnt Signaling Pathways as Therapeutic Targets in Cancer. Nat Rev Cancer 13:11

    Article  CAS  Google Scholar 

  27. Li X, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M (2009) New Wnt/β-catenin Signaling Inhibitors Isolated from Eleutherine palmifolia. Chem Asian J 4:540

    Article  CAS  Google Scholar 

  28. Mori N, Toume K, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2011) 2-Methoxy-1,4-naphthoquinone Isolated from Impatiens balsamina in a Screening Program for Activity to Inhibit Wnt Signaling. J Nat Med 65:234

    Article  CAS  Google Scholar 

  29. Park HY, Toume K, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M (2013) β-Sitosterol and Flavonoids Isolated from Bauhinia malabarica Found in a Screening Program for Wnt Signal Inhibitory Activity. J Nat Med 68:242

    Google Scholar 

  30. Yamaguchi T, Toume K, Arai MA, Ahmed F, Sadhu SK, Ishibashi M (2012) Phorbol Esters with Wnt Signal-augmenting Effects Isolated from Excoecaria indica. Nat Prod Commun 7:475

    CAS  Google Scholar 

  31. Laursen JB, Nielsen J (2004) Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. Chem Rev 104:1663

    Article  CAS  Google Scholar 

  32. Umezawa H, Hayano S, Maeda K, Ogata Y, Okami Y (1950) On a New Antibiotic, Griseolutein, Produced by Streptomyces. Jpn Med J 3:111

    Article  CAS  Google Scholar 

  33. Liu WC, Parker WL, Brandt SS, Atwal KS, Ruby EP (1984) Phenacein - an Angiotensin-Converting Enzyme Inhibitor Produced by a Streptomycete. II. Isolation, Structure Determination and Synthesis. J Antibiot 37:1313

    Article  CAS  Google Scholar 

  34. Ōmura S, Eda S, Funayama S, Komiyama K, Takahashi Y, Woodruff HB (1989) Studies on a Novel Antitumor Antibiotic, Phenazinomycin: Taxonomy, Fermentation, Isolation, and Physicochemical and Biological Characteristics. J Antibiot 42:1037

    Article  Google Scholar 

  35. Kim WG, Ryoo IJ, Yun BS, Shin-Ya K, Seto H, Yoo ID (1997) New Diphenazines with Neuronal Cell Protecting Activity, Phenazostatins A and B, Produced by Streptomyces sp. J Antibiot 50:715

    Article  CAS  Google Scholar 

  36. Abdelfattah MS, Toume K, Ishibashi M (2010) Izumiphenazine A, B and C: Novel Phenazine Derivatives Isolated from Streptomyces sp. IFM 11204. J Nat Prod 73:1999

    Article  CAS  Google Scholar 

  37. Abdelfattah MS, Toume K, Ishibashi M (2011) Izumiphenazine D, New Phenazoquinoline N-Oxide from Streptomyces sp. IFM 11204. Chem Pharm Bull 59:508

    Article  CAS  Google Scholar 

  38. Kitamura S, Hashizume K, Iida T, Miyashita E, Shirahata K, Kase H (1986) Studies on Lipoxygenase Inhibitors. II. KF8940 (2-n-Heptyl-4-hydroxyquinoline-N-oxide), a Potent and Selective Inhibitor of 5-Lipoxygenase, Produced by Pseudomonas methanica. J Antibiot 39:1160

    Article  CAS  Google Scholar 

  39. Kunze B, Hofle G, Reichenbach H (1987) The Aurachins, New Quinoline Antibiotics from Myxobacteria: Production, Physico-Chemical and Biological Properties. J Antibiot 40:258

    Article  CAS  Google Scholar 

  40. Kato S, Shindo K, Yamagishi Y, Matsuoka M, Kawai H, Mochizuki J (1993) Phenazoviridin, a Novel Free Radical Scavenger from Streptomyces sp. Taxonomy, Fermentation, Isolation, Structure Elucidation and Biological Properties. J Antibiot 46:1485

    Article  CAS  Google Scholar 

  41. Kunigami T, Shin-ya K, Furihata K, Furihata K, Hayakawa Y, Seto H (1998) A Novel Neuronal Cell Protecting Substance, Aestivophoenin C, Produced by Streptomyces purpeofuscus. J Antibiot 51:880

    Article  CAS  Google Scholar 

  42. Pathirana C, Jensen PR, Dwight R, Fenical W (1992) Rare Phenazine l-quinovose Esters from a Marine Actinomycete. J Org Chem 57:740

    Article  CAS  Google Scholar 

  43. Abdelfattah MS, Toume K, Ishibashi M (2011) Isolation and Structure Elucidation of Izuminosides A-C: Rare Phenazine Glycosides from Streptomyces sp. IFM 11260. J Antibiot 64:271

    Article  CAS  Google Scholar 

  44. Bock K, Lundt I, Pedersen C (1973) Assignment of Anomer Structure to Carbohydrates through Geminal 13C–1H Coupling Constants. Tetrahedron Lett 14:1037

    Article  Google Scholar 

  45. Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, Nishino H, Matsui H, Sakai, T (2005) Luteolin Induces Apoptosis via Death Receptor 5 Upregulation in Human Malignant Tumor Cells. Oncogene 24:7180

    Article  CAS  Google Scholar 

  46. Sperry J, Bachu P, Brimble MA (2008) Pyranonaphthoquinones – Isolation, Biological Activity, and Synthesis. Nat Prod Rep 25:376

    Article  CAS  Google Scholar 

  47. Chen Z, Huang H, Wang C, Li Y, Ding J, Sankawa U, Noguchi H, Iitaka Y (1986) Hongconin, a New Naphthalene Derivative from Hong-Cong, the Rhizome of Eleutherine americana Merr. et Hyene (Iridaceae). Chem Pharm Bull 34:2743

    Article  CAS  Google Scholar 

  48. Abdelfattah MS, Toume K, Ishibashi M (2011) New Pyranonaphthoquinones and Phenazine Alkaloid Isolated from Streptomyces sp. IFM 11307 with TRAIL Resistance-overcoming Activity. J Antibiot 64:729; corrigendum (2012) J Antibiot 65:277

    Google Scholar 

  49. Igarashi M, Chen W, Tsuchida T, Umekita M, Sawa T, Naganawa H, Hamada M, Takeuchi T (1995) 4′-Deacetyl-(−)-Griseusins A and B, New Naphthoquinone Antibiotics from an Actinomycete. J Antibiot 48:1502

    Article  CAS  Google Scholar 

  50. Bergy ME (1968) Kalafungin, a New Broad Spectrum Antibiotic. Isolation and Characterization. J Antibiot 21:454

    Article  CAS  Google Scholar 

  51. Ōmura S, Tanaka H, Okada Y, Marumo H (1976) Isolation and Structure of Nanaomycin D, an Enantiomer of the Antibiotic Kalafungin. J Chem Soc Chem Commun:320

    Google Scholar 

  52. Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W (2009) Of Two Make One: The Biosynthesis of Phenazines. ChemBioChem 10:2295

    Article  CAS  Google Scholar 

  53. Gilpin ML, Fulston M, Payne D, Cramp R, Hood I (1995) Isolation and Structure Determination of Two Novel Phenazines from a Streptomyces with Inhibitory Activity against Metallo-Enzymes, Including Metallo-beta-Lactamase. J Antibiot 48:1081

    Article  CAS  Google Scholar 

  54. Abdelfattah MS, Toume K, Ishibashi M (2012) Yoropyrazone, a New Naphthopyridazone Alkaloid Isolated from Streptomyces sp. IFM 11307 and Evaluation of its TRAIL Resistance-overcoming Activity. J Antibiot 65:245

    Article  CAS  Google Scholar 

  55. McNab H (1983) An Analysis of the 13C N.M.R. Spectra of Pyridazin-3-ones and Some Specifically Deuteriated Derivatives. J Chem Soc Perkin Trans 1:1203

    Article  Google Scholar 

  56. Bhandari R, Eguchi T, Serine A, Ohashi Y, Kakinuma K, Ito M, Mizoue K (1999) Structure of NG-061, a Novel Potentiator of Nerve Growth Factor (NGF) Isolated from Penicillium minioluteum F-4627. J Antibiot 52:231

    Article  CAS  Google Scholar 

  57. Stefańska B, Arciemiuk M, Bontemps-Gracz MM, Dzieduszycka M, Kupiec A, Martelli S, Borowski E (2003) Synthesis and Biological Evaluation of 2,7-Dihydro-3H-dibenzo[de,h]-cinnoline-3,7-dione Derivatives, a Novel Group of Anticancer Agents Active on a Multidrug Resistant Cell Line. Bioorg Med Chem 11:561

    Article  Google Scholar 

  58. Stefańska B, Bontemps-Gracz MM, Antonini I, Martelli S, Arciemiuk M, Piwkowska A, Rogacka D, Borowskia E (2005) 2,7-Dihydro-3H-pyridazino[5,4,3-kl]-acridin-3-one Derivatives, Novel Type of Cytotoxic Agents Active on Multidrug-Resistant Cell Lines. Synthesis and Biological Evaluation. Bioorg Med Chem 13:1969

    Article  Google Scholar 

  59. Arsenault GP (1965) The Structure of Bostrycoidin, a 8-Azaanthraquinone from Fusarium solani D2 Purple. Tetrahedron Lett 6:4033

    Article  Google Scholar 

  60. Miljkovic A, Mantle PG, Williams DJ, Rassing B (2001) Scorpinone: A New Natural Azaanthraquinone Produced by a Bispora-like Tropical Fungus. J Nat Prod 64:1251

    Article  CAS  Google Scholar 

  61. Moriyasu Y, Miyagawa H, Hamada N, Miyawaki H, Ueno T (2001) 5-Deoxy-7-methylbostrycoidin from Cultured Mycobionts from Haematomma sp. Phytochemistry 58:239

    Article  CAS  Google Scholar 

  62. Koyama J, Morita I, Kobayashi N, Osakai T, Usuki Y, Taniguchi M (2005) Structure–Activity Relations of Azafluorenone and Azaanthraquinone as Antimicrobial Compounds. Bioorg Med Chem Lett 15:1079

    Article  CAS  Google Scholar 

  63. Barton DHR, Jaszberenyi JC, Liu W, Shinada T (1996) Oxidation of Hydrazones by Hypervalent Organoiodine Reagents: Regeneration of the Carbonyl Group and Facile Syntheses of α-Acetoxy and α-Alkoxy Azo Compounds. Tetrahedron 52:14673

    Article  CAS  Google Scholar 

  64. Chomcheon P, Sriubolmas N, Wiyakrutta S, Ngamrojanavanich N, Chaichit N, Mahidol C, Ruchirawat S, Kittakoop P (2006) Cyclopentenones, Scaffolds for Organic Syntheses Produced by the Endophytic Fungus Mitosporic dothideomycete sp. LRUB20. J Nat Prod 69:1351

    Article  CAS  Google Scholar 

  65. Lattová E, Perreault H (2009) Method for Investigation of Oligosaccharides Using Phenylhydrazine Derivatization. Methods Mol Biol 534:65

    Google Scholar 

  66. Abdelfattah MS, Toume K, Arai MA, Masu H, Ishibashi M (2012) Katorazone, a Novel Yellow Pigment with 2-Azaquinone-Phenylhydrazone Structure Produced by Streptomyces sp. IFM 11299. Tetrahedron Lett 53:3346

    Article  CAS  Google Scholar 

  67. Bauer JD, King RW, Brady SF (2010) Utahmycins A and B, Azaquinones Produced by an Environmental DNA Clone. J Nat Prod 73:976

    Article  CAS  Google Scholar 

  68. Lyčka A, Jirman J (1995) 1H, 13C and 15 N NMR Spectra of Some Anthracenedione Phenylhydrazones. Dyes Pigments 28:207

    Article  Google Scholar 

  69. Cui HX, Shaaban KA, Schiebel M, Qin S, Laatsch H (2008) New Antibiotic with Typical Plant Anthraquinone Structure Obtained Studying Terrestrial and Marine Streptomycetes. World J Microbiol Biotechnol 24:419

    Article  CAS  Google Scholar 

  70. Aoki Y, Yoshida Y, Yoshida M, Kawaide H, Abe H, Natsume M (2005) Anthranilic Acid, a Spore Germination Inhibitor of Phytopathogenic Streptomyces sp. B-9-1 Causing Root Tumor of Melon. Actinomycetologica 19:48

    Article  CAS  Google Scholar 

  71. Ma C, Li Y, Niu S, Zhang H, Liu X, Che Y (2011) N-Hydroxypyridones, Phenylhydrazones, and a Quinazolinone from Isaria farinosa. J Nat Prod 74:32

    Google Scholar 

  72. Aida W, Ohtsuki T, Li X, Ishibashi M (2009) Isolation of New Carbamate- or Pyridine-Containing Natural Products, Fuzanins A, B, C, and D from Kitasatospora sp. IFM10917. Tetrahedron 65:369

    Article  CAS  Google Scholar 

  73. Kawabata J, Tahara S, Mizutani J (1978) (2S,3R)-trans-4-trans-6-Octadiene-2,3-diol: Structure and Absolute Configuration of a Novel Metabolite of Sorbic Acid. Agric Biol Chem 42:89

    Google Scholar 

  74. Hirama M, Shigemoto T, Ito S (1985) Reversal of Diastereofacial Selectivity in the Intramolecular Michael Addition of δ-Carbamoyloxy-α,β-unsaturated Esters. Synthesis of N-benzoyl-d,l-daunosamine. Tetrahedron Lett 26:4137

    Google Scholar 

  75. Dillon J, Nakanishi K (1975) Absolute Configurational Studies of Vicinal Glycols and Amino Alcohols. I. With Bis(acetylacetonato)nickel. J Am Chem Soc 97:5409

    Article  CAS  Google Scholar 

  76. Maekawa K, Toume K, Ishibashi M (2010) Isolation of New Fuzanins, Carbamate-Containing Natural Products, from Kitasatospora sp. IFM10917. J Antibiot 63:385

    Article  CAS  Google Scholar 

  77. Shigihara Y, Koizumi Y, Tamamura T, Homma Y, Isshiki K, Dobashi K, Naganawa H, Takeuchi T (1988) 6-Deoxy-8-O-methylrabelomycin and 8-O-Methylrabelomycin from a Streptomyces Species. J Antibiot 41:1260

    Google Scholar 

  78. Ishibashi M, Tsukahara K, Toume K (2013) Elmonin. Jap Pat Appl 2013–068062, March 28, 2013

    Google Scholar 

  79. Raju R, Gromyko O, Fedorenko V, Luzhetskyy A, Müller R (2013) Oleaceran: A Novel Spiro[isobenzofuran-1,2′-naphtho[1,8-bc]furan] Isolated from a Terrestrial Streptomyces sp. Org Lett 15:3487

    Article  CAS  Google Scholar 

  80. Kikuchi H, Ohtsuki T, Koyano T, Kowithayakorn T, Sakai T, Ishibashi M (2010) Activity of Mangosteen Xanthones and Teleocidin A-2 in Death-Receptor Expression Enhancement and Tumor Necrosis-Factor Related Apoptosis-Inducing Ligand Assays. J Nat Prod 73:452

    Article  CAS  Google Scholar 

  81. Sakai S, Hitotsuyanagi Y, Aimi N, Fujiki H, Suganuma M, Sugimura T, Endo Y, Shudo K (1986) Absolute Configuration of Lyngbyatoxin A (Teleocidin A-1) and Teleocidin A-2. Tetrahedron Lett 27:5219

    Article  CAS  Google Scholar 

  82. Jin CY, Park C, Cheong JH, Choi BT, Lee TH, Lee JD, Lee WH, Kim GY, Ryu CH, Choi YH (2007) Genistein Sensitizes TRAIL-Resistant Human Gastric Adenocarcinoma AGS Cells through Activation of Caspase-3. Cancer Lett 257:56

    Article  CAS  Google Scholar 

  83. Ahmed F, Ohtsuki T, Aida W, Ishibashi M (2008) Tyrosine Derivatives Isolated from Streptomyces sp. IFM 10937 in a Screening Program for TRAIL-Resistance Overcoming Activity. J Nat Prod 71:1963

    Article  CAS  Google Scholar 

  84. Hinman JW, Caron EL, Hoeksema H (1957) The Structure of Novobiocin. J Am Chem Soc 79:3789

    Article  CAS  Google Scholar 

  85. Marfey P (1984) Determination of d-amino acids. II. Use of a Bifunctional Reagent, 1,5-Difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49:591

    Article  CAS  Google Scholar 

  86. Fujii K, Ikai Y, Mayumi T, Oka H, Suzuki M, Harada K (1997) A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Elucidation of Limitations of Marfey’s Method and of Its Separation Mechanism. Anal Chem 69:3346

    Article  CAS  Google Scholar 

  87. Tamai Y, Toume K, Arai MA, Hayashida A, Kato H, Shizuri Y, Tsukamoto S, Ishibashi M (2012) Nonactin and Related Compounds Found in a Screening Program for Wnt Signal Inhibitory Activity. Heterocycles 84:1245

    Article  CAS  Google Scholar 

  88. Beck J, Gerlach H, Prelog V, Voser W (1962) Stoffwechselprodukte von Actinomyceten. 35. Mitteilung. Über die Konstitution der Makrotetrolide Monactin, Dinactin und Trinactin. Helv Chim Acta 45:620

    Article  CAS  Google Scholar 

  89. Gwak J, Cho M, Gong SJ, Won J, Kim DE, Kim EY, Lee SS, Kim M, Kim TK, Shin JG, Oh S (2006) Protein-Kinase-C-Mediated β-Catenin Phosphorylation Negatively Regulates the Wnt/β-Catenin Pathway. J Cell Sci 119:4702

    Article  CAS  Google Scholar 

  90. Tamai Y, Toume K, Arai MA, Ishibashi M (2012) Griseoviridin and Cyclic Hydroxamates Found in a Screening Program for Wnt Signal Inhibitor. Heterocycles 86:1517

    Article  CAS  Google Scholar 

  91. Lin Q, Liu Y, Xi T (2008) The NMR Analysis of Antimicrobial SR-B Compound Produced by Marine Actinomycete N331. Fenxi Ceshi Xuebao 27:911

    CAS  Google Scholar 

  92. Lee HS, Shin HJ, Jang KH, Kim TS, Oh KB, Shin J (2005) Cyclic Peptides of the Nocardamine Class from a Marine-Derived Bacterium of the Genus Streptomyces. J Nat Prod 68:623

    Article  CAS  Google Scholar 

  93. Takahashi A, Nakamura H, Kameyama T, Kurasawa S, Naganawa H, Okami Y, Takeuchi T, Umezawa H, Iitaka Y (1987) Bisucaberin, a New Siderophore, Sensitizing Tumor Cells to Macrophage-Mediated Cytolysis. II. Physico-Chemical Properties and Structure Determination. J Antibiot 40:1671

    Article  CAS  Google Scholar 

  94. Seo Y, Cho KW, Rho JR, Mo SJ, Shin J (2001) A New Analog of Antimycin from Streptomyces sp. M03033. J Microbiol Biotechnol 11:663

    CAS  Google Scholar 

  95. Davarani SSH, Fakhari AR, Shaabani A, Ahmar H, Maleki A, Fumani NS (2008) A Facile Electrochemical Method for the Synthesis of Phenazine Derivatives via an ECECC Pathway. Tetrahedron Lett 49:5622

    Article  Google Scholar 

  96. Clark TW, Sperry J (2012) Biomimetic Synthesis of Phenazine-1,6-dicarboxylic Acid (PDC). Synlett 23:2827

    Article  CAS  Google Scholar 

  97. Kometani T, Takeuchi Y, Yoshii E (1983) Pyranonaphthoquinone Antibiotics. 4. Total Synthesis of (+)-Griseusin A, an Enantiomer of the Naturally Occurring Griseusin A. J Org Chem 48:2311

    Article  CAS  Google Scholar 

  98. Tatsuta K (2008) Total Synthesis and Development of Bioactive Natural Products. Proc Jpn Acad Ser B Phys Biol Sci 84:87

    Article  CAS  Google Scholar 

  99. Donner CD (2013) Tandem Michael-Dieckmann/Claisen Reaction of ortho-Toluates—the Staunton-Weinreb Annulation. Tetrahedron 69:3747

    Google Scholar 

  100. Li Z, Gao Y, Tang Y, Dai M, Wang G, Wang Z, Yang Z (2008) Total Synthesis of Crisamicin A. Org Lett 10:3017

    Article  CAS  Google Scholar 

  101. Naysmith BJ, Brimble MA (2013) Synthesis of the Griseusin B Framework via a One-Pot Annulation-Methylation-Double Deprotection-Spirocyclization Sequence. Org Lett 15:2006

    Article  CAS  Google Scholar 

  102. Zhang Y, Wang X, Sunkara M, Ye Q, Ponomereva LV, She QB, Morris AJ, Thorson JS (2013) A Diastereoselective Oxa-Pictet-Spengler-Based Strategy for (+)-Frenolicin B and epi-(+)-Frenolicin B Synthesis. Org Lett 15:5566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The studies described herein were carried out at the Laboratory of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, and the valuable efforts of Drs. Midori Arai and Kazufumi Toume, and all members in the author’s group are acknowledged. Thanks are due to Professors Tohru Gonoi and Yuzuru Mikami (Medical Mycology Research Center, Chiba University) for the identification and deposit of the actinomycete strains investigated. The research described herein was supported by Grants in-Aid (22310133, 23404007, and 25670045) for Scientific Research from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid (23102008) for Scientific Research on Innovative Areas (“Chemical Biology of Natural Products”) the Special from The Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), from Special Funds for Education and Research (Development of SPECT Probes for Pharmaceutical Innovation) from MEXT, the Iodine Research Project in Chiba University, the Asian Core Program (JSPS), the Japan Antibiotics Research Foundation, the Sekisui Chemical Innovations Inspired by Nature Research Support Program, an AstraZeneca R&D Grant, and the Tokyo Biochemical Research Foundation. We also thank JSPS for a postdoctoral fellowship of M. S. Abdelfattah (Chemistry Department, Faculty of Science, Helwan University, Egypt) (ID No. P09042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Ishibashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ishibashi, M. (2014). Bioactive Heterocyclic Natural Products from Actinomycetes Having Effects on Cancer-Related Signaling Pathways. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products 99. Progress in the Chemistry of Organic Natural Products, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-04900-7_3

Download citation

Publish with us

Policies and ethics