Skip to main content

Directing Self-Organized Columnar Nanostructures of Discotic Liquid Crystals for Device Applications

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The columnar nanostructures of discotic liquid crystals are fascinating supramolecular systems with promising electronic and optoelectronic properties. Due to their remarkable performance in organic field effect transistors and organic photovoltaic devices, they have been regarded as a new generation of soft organic semiconductors. However, in order to realize the full potential of these intriguing materials, the discotic molecules need to be suitably oriented in the device structures directed by different stimuli. The devices fabricated with oriented materials have been demonstrated to perform better than using non-oriented materials. Over the years, different techniques have been developed to direct the appropriate alignment of the columnar phase of discotic liquid crystals on and in-between substrates. This chapter discusses the different methods used for the alignment control of discotic columnar phases parallel (planar) and perpendicular (homeotropic) to the substrates up to a macroscopic length scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Bremer, P. Kirsch, M. Klasen-Memmer, K. Tarumi, The TV in your pocket: development of liquid-crystal materials for the new millennium. Angew. Chem. Int. Ed. 52, 8880–8896 (2013)

    Google Scholar 

  2. T. Geelhaar, K. Griesar, B. Reckmann, 125 Years of liquid crystals—a scientific revolution in the home. Angew. Chem. Int. Ed. 52, 8798–8809 (2013)

    Google Scholar 

  3. S.H. Lee, S.S. Bhattacharyya, H.S. Jin, K.-U. Jeong, Devices and materials for high-performance mobile liquid crystal displays. J. Mater. Chem. 22, 11893–11903 (2012)

    Google Scholar 

  4. J.W. Goodby, The nanoscale engineering of nematic liquid crystals for displays. Liq. Cryst. 38, 1363–1387 (2011)

    Google Scholar 

  5. D. Demus, J.W. Goodby, G.W. Gray, H.-W. Spiess, V. Vill (eds.), in Handbook of Liquid Crystals, vol. 1–3 (Wiley-VCH, New York, 1998)

    Google Scholar 

  6. B. Bahadur (ed.), Liquid Crystals Applications and Uses (World Scientific, Singapore, 1992)

    Google Scholar 

  7. J.W. Goodby, I.M. Saez, S.J. Cowling, V. Gortz, M. Draper, A.W. Hall, S. Sia, G. Cosquer, S.-E. Lee, E.P. Raynes, Transmission and amplification of information and properties in nanostructured liquid crystals. Angew. Chem. Int. Ed. 47, 2754–2787 (2008)

    Google Scholar 

  8. T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45, 38–68 (2006)

    Google Scholar 

  9. C. Tschierske, Liquid crystal engineering-new complex mesophase structures and their relation to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36, 1930–1970 (2007)

    Google Scholar 

  10. C. Tschierske, Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 52, 8828–8878 (2013)

    Google Scholar 

  11. E.-K. Fleischmann, R. Zentel, Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew. Chem. Int. Ed. 52, 8810–8827 (2013)

    Google Scholar 

  12. Q. Li (ed.), Liquid Crystals Beyond Displays: Physics, Chemistry, and Applications (Wiley, Hoboken, 2012)

    Google Scholar 

  13. Q. Li (ed.), Self-Organized Organic Semiconductors: From Materials to Device Applications (Wiley, Hoboken, 2011)

    Google Scholar 

  14. Q. Li (ed.), in Intelligent Stimuli Responsive Materials: From Well-Defined Nanostructures to Applications (Wiley, New York, 2013)

    Google Scholar 

  15. Y. Wang, Q. Li, Light-driven chiral molecular switches or motors in liquid crystal media. Adv. Mater. 24, 1926–1945 (2012)

    Google Scholar 

  16. T. Ikeda, J. Mamiya, Y. Yu, Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007)

    Google Scholar 

  17. C. Ohm, M. Brehmer, R. Zentel, Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010)

    Google Scholar 

  18. H.N.W. Lekkerkerker, G.J. Vroege, Liquid crystal phase transitions in suspensions of mineral colloids: new life from old roots. Phil. Trans. R. Soc. A 371, 20120263 (2013)

    ADS  Google Scholar 

  19. F.M. van der Kooij, K. Kassapidou, H.N.W. Lekkerkerker, Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000)

    ADS  Google Scholar 

  20. J.-C.P. Gabriel, F. Camerel, B.J. Lemaire, H. Desvaux, P. Davidson, P. Betail, Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature 413, 504–508 (2001)

    ADS  Google Scholar 

  21. S.J. Woltman, G.D. Jay, G.P. Crawford, Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007)

    ADS  Google Scholar 

  22. I.W. Hamley, Liquid crystal phase formation by biopolymers. Soft Matter 6, 1863–1871 (2010)

    ADS  Google Scholar 

  23. A. Angelova, B. Angelov, R. Mutafchieva, S. Leieur, P. Couvreur, Self-assembled multicompartment liquid crystalline lipid carrier for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 44, 147–156 (2011)

    Google Scholar 

  24. A.M. Lowe, N.L. Abbott, Liquid crystalline materials for biological applications. Chem. Mater. 24, 746–758 (2012)

    Google Scholar 

  25. H.K. Bisoyi, S. Kumar, Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. 40, 306–319 (2011)

    Google Scholar 

  26. T. Hegmann, H. Qi, V.M. Marx, Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J. Inorg. Organomet. Polym Mater. 17, 483–508 (2007)

    Google Scholar 

  27. J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12, 1387–1412 (2012)

    ADS  Google Scholar 

  28. G.L. Nealon, R. Greget, C. Dominguez, Z.T. Nagy, D. Guillon, J.-L. Gallani, B. Donnio, Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J. Org. Chem. 8, 349–370 (2012)

    Google Scholar 

  29. H.K. Bisoyi, S. Kumar, Carbon-based liquid crystals: art and science. Liq. Cryst. 38, 1427–1449 (2011)

    Google Scholar 

  30. S. Kumar, Chemistry of Discotic Liquid Crystals: From Monomers to Polymers (CRC Press, Boca Raton, 2011)

    Google Scholar 

  31. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R.H. Friend, J.D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293, 1119–1122 (2001)

    ADS  Google Scholar 

  32. D. Adam, P. Schumacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K.H. Etzbachi, H. Ringsdorf, D. Haarer, Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371, 141–143 (1994)

    ADS  Google Scholar 

  33. X. Feng, V. Marcon, W. Pisula, M.R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, K. Mullen, Towards high charge-carrier mobilities by rational design of the shape and periphery of discotics. Nat. Mater. 8, 421–426 (2009)

    ADS  Google Scholar 

  34. K. Ohta, K. Hatsusaka, M. Sugibayashi, M. Ariyoshi, K. Ban, F. Maeda, R. Naito, K. Nishizawa, A.M. Van de Craats, J.M. Warman, Discotic liquid crystalline semiconductors. Mol. Cryst. Liq. Cryst. 397, 25–45 (2003)

    Google Scholar 

  35. S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Discotic liquid crystals: from tailor-made synthesis to plastic electronics. Angew. Chem. Int. Ed. 46, 4832–4887 (2007)

    Google Scholar 

  36. S. Kumar, Self-organization of disc-like molecules: chemical aspects. Chem. Soc. Rev. 35, 83–109 (2006)

    Google Scholar 

  37. M. Funahasi, Development of liquid-crystalline semiconductors with high carrier mobilities and their application to thin-film transistors. Polym. J. 41, 459–469 (2009)

    Google Scholar 

  38. R.J. Bushby, O.R. Lozman, Discotic liquid crystals 25 years on. Curr. Opin. Colloid Interface Sci. 7, 343–354 (2002)

    Google Scholar 

  39. S. Kumar, Recent developments in the chemistry of triphenylene-based discotic liquid crystals. Liq. Cryst. 31, 1037–1059 (2004)

    Google Scholar 

  40. R.J. Bushby, K. Kawata, Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011)

    Google Scholar 

  41. B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications. Chem. Mater. 23, 378–396 (2011)

    Google Scholar 

  42. M. O’Neill, S.M. Kelly, Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011)

    Google Scholar 

  43. J. Wu, W. Pisula, K. Mullen, Graphene as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Google Scholar 

  44. S. Chandrasekhar, S.K. Prasad, Recent developments in discotic liquid crystals. Contemp. Phys. 40, 237–245 (1999)

    ADS  Google Scholar 

  45. S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals: a new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902–1929 (2007)

    Google Scholar 

  46. D. Janietz, Structure formation control of disc-shaped molecules. Mol. Cryst. Liq. Cryst. 396, 251–264 (2003)

    Google Scholar 

  47. C.D. Simpson, J. Wu, M.D. Watson, K. Mullen, From graphite molecules to columnar superstructures—an exercise in nanoscience. J. Mater. Chem. 14, 494–504 (2004)

    Google Scholar 

  48. D. Janietz, Structure formation of functional sheet-shaped mesogens. J. Mater. Chem. 8, 265–274 (1998)

    Google Scholar 

  49. W. Pisula, X. Feng, K. Mullen, Tuning the columnar organization of discotic polycyclic aromatic hydrocarbons. Adv. Mater. 22, 3634–3649 (2010)

    Google Scholar 

  50. W. Pisula, M. Zorn, J.Y. Chang, K. Mullen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials. Macromol. Rapid Commun. 30, 1179–1202 (2009)

    Google Scholar 

  51. J.K. Vij, A. Kocot, T.S. Perova, Order parameter, alignment and anchoring transition in discotic liquid crystals. Mol. Cryst. Liq. Cryst. 397, 231–244 (2003)

    Google Scholar 

  52. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, New York, 2005)

    Google Scholar 

  53. S.H. Eichhorn, A. Adavelli, H.S. Li, N. Fox, Alignment of discotic liquid crystals. Mol. Cryst. Liq. Cryst. 397, 47–58 (2003)

    Google Scholar 

  54. V. Percec, M. Glodde, T.K. Bera, Y. Miura, I. Shiyanovskaya, K.D. Singer, V.S.K. Balagurusamy, P.A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S.D. Hudson, H. Duan, Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002)

    ADS  Google Scholar 

  55. M. Yoshio, T. Kagata, K. Hoshino, T. Mukai, H. Ohno, T. Kato, One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006)

    Google Scholar 

  56. T.-Q. Nguyen, R. Martel, M. Bushey, P. Avouris, A. Carlsen, C. Nuckolls, L. Brus, Self-assembly of 1D organic semiconductor nanostructures. Phys. Chem. Chem. Phys. 9, 1515–1532 (2007)

    Google Scholar 

  57. J. Hoogboom, J.A.A.W. Elemans, A.E. Rowan, T.H.M. Rasing, R.J.M. Nolte, The development of self-assembled liquid crystal display alignment layers. Phil. Trans. R. Soc. A 365, 1553–1576 (2007)

    ADS  Google Scholar 

  58. G.D. Luca, W. Pisula, D. Credgington, E. Treossi, O. Fenwick, G.M. Lazzerini, R. Dabirian, E. Orgiu, A. Liscio, V. Palermo, K. Mullen, F. Cacialli, P. Samori, Non-conventional processing and post-processing methods for the nanostructuring of conjugated materials for organic electronics. Adv. Funct. Mater. 21, 1279–1295 (2011)

    Google Scholar 

  59. O. Yaroshchuk, Y. Reznikov, Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. 22, 286–300 (2012)

    Google Scholar 

  60. K. Ichimura, Photoalignment of liquid-crystals systems. Chem. Rev. 100, 1847–1873 (2000)

    Google Scholar 

  61. H.N. Tsao, H.J. Rader, W. Pisula, A. Rouhanipour, K. Mullen, Novel organic semiconductors and processing techniques for organic field-effect transistors. Phys. Stat. Sol. (a) 205, 421–429 (2008)

    ADS  Google Scholar 

  62. L. Li, S. Kang, J. Harden, Q. Sun, X. Zhou, L. Dai, A. Jakli, S. Kumar, Q. Li, Nature-inspired light-harvesting liquid crystalline porphyrins for organic photovoltaics. Liq. Cryst. 35, 233–239 (2008)

    Google Scholar 

  63. H.K. Bisoyi, S. Kumar, Discotic nematic liquid crystals: science and technology. Chem. Soc. Rev. 39, 264–285 (2010)

    Google Scholar 

  64. K. Kawata, Orientation control and fixation of discotic liquid crystal. Chem. Rec. 2, 59–80 (2002)

    MathSciNet  Google Scholar 

  65. H. Mori, The wide view (WV) film for enhancing the field of view of LCDs. J. Disp. Technol. 1, 179–186 (2005)

    ADS  Google Scholar 

  66. C. Vauchier, A. Zann, P. Le Barny, J.C. Dubois, J. Billard, Orientation of discotic mesophases. Mol. Cryst. Liq. Cryst. 66, 103–114 (1981)

    Google Scholar 

  67. Y. Shimizu, H. Monobe, M. Heya, K. Awazu, A novel technique for the alignment control of highly ordered liquid crystals based on vibrational excitation of chemical bond by polarized infrared laser. Mol. Cryst. Liq. Cryst. 441, 287–295 (2005)

    Google Scholar 

  68. H. Monobe, N. Terasawa, K. Kiyohara, Y. Shimizu, H. Azehara, A. Nakasa, M. Fujihara, Alignment behavior of discotic nematic and rectangular columnar mesophases on self-assembled monolares of alkanethiols and asymmetrical disulphides. Mol. Cryst. Liq. Cryst. 412, 229–236 (2004)

    Google Scholar 

  69. H. Monobe, S. Mima, T. Sugino, Y. Shimizu, M. Ukon, Alignment behavior of the discotic nematic phase of 2,3,6,7,10,11-hexa(4-n-octyloxybenzoyloxy)triphenylene on polyimide and cetyltrimethylammonium bromide coated substrates. Liq. Cryst. 28, 1253–1258 (2001)

    Google Scholar 

  70. T. Sergan, M. Sonpatki, J. Kelly, L.C. Chien, Mol. Cryst. Liq. Cryst. 359, 245–257 (2001)

    Google Scholar 

  71. T. Sergan, M. Sonpatki, J. Kelly, L.C. Chien, Polarizing microscopy of a chiral discotic. Mol. Cryst. Liq. Cryst. 359, 259–267 (2001)

    Google Scholar 

  72. K. Ichimura, S. Furumi, S. Morino, M. Kidowaki, M. Nakagawa, M. Ogawa, Y. Nishiura, Photocontrolled orientation of discotic liquid crystals. Adv. Mater. 12, 950–953 (2000)

    Google Scholar 

  73. S. Furumi, M. Kidowaki, M. Ogawa, Y. Nishiura, K. Ichimura, Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer films. J. Phys. Chem. B 109, 9245–9254 (2005)

    Google Scholar 

  74. S. Furumi, K. Ichimura, Surface-assisted photoalignment of discotic liquid crystals by nonpolarized light irradiation of photo-cross-linkable polymer thin films. J. Phys. Chem. B 111, 1277–1287 (2007)

    Google Scholar 

  75. S. Furumi, K. Ichimura, Highly sensitive photoalignment of calamitic and discotic liquid crystals assisted by axis-selective triplet energy transfer. Phys. Chem. Chem. Phys. 13, 4919–4927 (2011)

    Google Scholar 

  76. S. Furumi, D. Janietz, M. Kidowaki, M. Nakagawa, S. Morino, J. Stumpe, K. Ichimura, Polarized photoluminescence from photopatterned discotic liquid crystal films. Chem. Mater. 13, 1434–1437 (2001)

    Google Scholar 

  77. S. Furumi, D. Janietz, M. Kidowaki, M. Nakagawa, S. Morino, J. Stumpe, K. Ichimura, Surface-assisted orientational control of discotic liquid crystals by light. Mol. Cryst. Liq. Cryst. 368, 517–524 (2001)

    Google Scholar 

  78. S. Ikeda, Y. Takanishi, K. Ishikawa, H. Takezoe, Magnetic field effect on the alignment of a discotic liquid crystal. Mol. Cryst. Liq. Cryst. 329, 589–595 (1999)

    Google Scholar 

  79. X. Zhou, S. Kang, S. Kumar, R.R. Kulkarni, S.Z.D. Cheng, Q. Li, Self-assembly of porphyrin and fullerene supramolecular complex into highly ordered nanostructure by simple thermal annealing. Chem. Mater. 20, 3551–3553 (2008)

    Google Scholar 

  80. S. Kumar, H.K. Bisoyi, Aligned carbon nanotubes in the supramolecular order of discotic liquid crystals. Angew. Chem. Int. Ed. 46, 1501–1503 (2007)

    Google Scholar 

  81. H.K. Bisoyi, S. Kumar, Carbon nanotubes in triphenylene and rufigallol-based room temperature monomeric and polymeric discotic liquid crystals. J. Mater. Chem. 18, 3032–3039 (2008)

    Google Scholar 

  82. J.J. Lee, A. Yamaguchi, M.A. Alam, Y. Yamamoto, T. Fukushima, K. Kato, M. Takata, T. Aida, Discotic ionic liquid crystals of triphenylene as dispersants for orientating single-walled carbon nanotubes. Angew. Chem. Int. Ed. 51, 8490–8494 (2012)

    Google Scholar 

  83. T.S. Perova, J.K. Vij, The influence of surface structure on the discotic liquid crystalline alignment: an infrared spectroscopy study. Adv. Mater. 7, 919–922 (1995)

    Google Scholar 

  84. T.S. Perova, J.K. Vij, A. Kocot, Observation of an anchoring transition in a discotic liquid crystal. Europhys. Lett. 44, 198–204 (1998)

    ADS  Google Scholar 

  85. T. Perova, S. Tsvetkov, J. Vij, S. Kumar, Observation of the orientational transition in hexa(hexylthio)triphenylene using polarized FTIR study. Mol. Cryst. Liq. Cryst. 351, 95–102 (2000)

    Google Scholar 

  86. K. Hatsusaka, K. Ohta, I. Yamamoto, H. Shirai, Discotic liquid crystals of transition metal complexes, part 30: spontaneous uniform homeotropic alignment of octakis(dialkoxyphenoxy)phthalocyaninatocopper(II) complexes. J. Mater. Chem. 11, 423–433 (2001)

    Google Scholar 

  87. T. Kamei, T. Kato, E. Itoh, K. Ohta, Discotic liquid crystals of transition metal complexes 47: synthesis of phthalocyanine-fullerene dyads showing spontaneous homeotropic alignment. J. Porphyrins Phthalocyanines 16, 1261–1275 (2012)

    Google Scholar 

  88. M. Ariyoshi, M. Sugibayashi-Kajita, A. Suzuki-Ichihara, T. Kato, T. Kamei, E. Itoh, K. Ohta, Discotic liquid crystals of transition metal complexes 44: synthesis of hexaphenoxy-substituted phthalocyanine derivatives showing spontaneous perfect homeotropic alignment. J. Porphyrins Phthalocyanines 16, 1114–1123 (2012)

    Google Scholar 

  89. S. Tunel, H.A.J. Banimuslem, M. Durmus, A.G. Gurek, V. Ahsen, T.V. Basova, A.K. Hassan, Liquid crystalline octasubstiuted lead (II) phthalocyanines: effects of alkoxy and alkylthio substituents on film alignment and electrical properties. New J. Chem. 36, 1665–1672 (2012)

    Google Scholar 

  90. W. Pisula, Z. Tomovic, B.E. Hamaoui, M.D. Watson, T. Pakula, K. Mullen, Control of the homeotropic order of discotic hexa-peri-hexabenzocoronene. Adv. Funct. Mater. 15, 893–904 (2005)

    Google Scholar 

  91. C. Liu, A. Fechtenkotter, M.D. Watson, K. Mullen, A.J. Bard, Room temperature discotic liquid crystalline thin films of hexa-peri-hexabenzocoronene: synthesis and optoelectronic properties. Chem. Mater. 15, 124–130 (2003)

    Google Scholar 

  92. E. Grelet, H. Bock, Control of the orientation of thin open supported columnar liquid crystal films by the kinetics of growth. Europhys. Lett. 73, 712–718 (2006)

    ADS  Google Scholar 

  93. E. Charlet, E. Grelet, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gheradi, I. Seguy, Ultrathin films of homeotropically aligned columnar liquid crystals on indium tin oxide electrodes. Appl. Phys. Lett. 92(024107), 1–3 (2008)

    Google Scholar 

  94. T. Brunet, O. Thiebaut, E. Charlet, H. Bock, J. Kelber, E. Grelet, Anchoring transition in confined discotic columnar liquid crystal films. Eur. Phys. Lett. 93(16004), 1–6 (2011)

    Google Scholar 

  95. L. Cisse, P. Destruel, S. Archambeau, I. Seguy, P. Jolinat, H. Bock, E. Grelet, Measurement of the exciton diffusion length in discotic columnar liquid crystals: comparison between homeotropically oriented and non-oriented samples. Chem. Phys. Lett. 476, 89–91 (2009)

    ADS  Google Scholar 

  96. E. Grelet, S. Dardel, H. Bock, M. Goldmann, E. Lacaze, F. Nallet, Morphology of open films of discotic hexagonal columnar liquid crystals as probed by grazing incidence X-ray diffraction. Eur. Phys. J. E 31, 343–349 (2010)

    Google Scholar 

  97. S. Archambeau, I. Seguy, P. Jolinat, J. farenc, P. Destruel, T.P. Nguyen, H. Bock, E. Grelet, Stabilization of discotic liquid organic thin films by ITO surface treatment. Appl. Surf. Sci. 253, 2078–2086 (2006)

    Google Scholar 

  98. O. Thiebaut, H. Bock, E. Grelet, Face-on oriented bilayer of two discotic columnar liquid crystals for organic donor-acceptor heterojunction. J. Am. Chem. Soc. 132, 6886–6887 (2010)

    Google Scholar 

  99. J. Wang, Z. He, Y. Zhang, H. Zhao, C. Zhang, X. Kong, L. Mu, C. Liang, The driving force for homeotropic alignment of a triphenylene derivative in a hexagonal columnar mesophase on single substrate. Thin Solid Films 518, 1973–1979 (2010)

    ADS  Google Scholar 

  100. J. Li, Z. He, H. Zhao, H. Gopee, X. Kong, M. Xu, X. An, X. Jing, A.N. Cammidge, Homeotropic alignment through charge transfer-induced columnar mesophase formation in an unsymmetricallly substituted triphenylene derivative. Pure Appl. Chem. 11, 1993–2003 (2010)

    Google Scholar 

  101. G. Zucci, P. Viville, B. Donnio, A. Vlad, S. Melinte, M. Mondeshki, R. Graf, H.W. Spiess, Y.H. Geerts, R. Lazzaroni, Miscibility between differently shaped mesogens: structural and morphological study of a phthalocyanine-perylene binary system. J. Phys. Chem. B 113, 5448–5457 (2009)

    Google Scholar 

  102. G. Schweicher, G. Gbabode, F. Quist, O. Debever, N. Dumont, S. Sergeyev, Y.H. Geerts, Homeotropic and planar alignment of discotic liquid crystals: the role of the columnar phase. Chem. Mater. 21, 5867–5874 (2009)

    Google Scholar 

  103. H.K. Bisoyi, S. Kumar, First examples of monodisperse discotic liquid crystal pentamers: synthesis and mesomorphism. Tetrahedron Lett. 49, 3628–3631 (2008)

    Google Scholar 

  104. I. Cour, Z. Pan, L.T. Lebruin, M.A. Case, M. Furis, R.L. Headrick, Selective orientation of discotic films by interface nucleation. Org. Electron. 13, 419–424 (2012)

    Google Scholar 

  105. N. Terasawa, H. Monobe, K. Kiyohara, Y. Shimizu, Strong tendency towards homeotropic alignment in a hexagonal columnar mesophase of fluoroalkylated triphenylenes. Chem. Commun. 1678–1679 (2003)

    Google Scholar 

  106. N. Terasawa, N. Tanigaki, H. Monobe, K. Kiyohara, Alignment behavior for novel triphenylene compounds possessing fluroalkylated side chains on modified substrates. J. Fluorine Chem. 127, 1096–1104 (2006)

    Google Scholar 

  107. X. Zhou, S. Kang, S. Kumar, Q. Li, Self-assembly of discotic liquid crystal porphyrin into more controllable ordered nanostructure mediated by fluorophobic effect. Liq. Cryst. 36, 267–274 (2009)

    Google Scholar 

  108. Q. Sun, L. Dai, X. Xiaoli, L. Li, Q. Li, Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Appl. Phys. Lett. 91, 253505 (2007)

    ADS  Google Scholar 

  109. J. Hoogboom, P.M.L. Garcia, M.B.J. Otten, J.A.A.W. Elemans, J. Sly, S.V. Lazarenko, T. Rasing, A.E. Rowan, R.J.M. Nolte, Tunable command layers for liquid crystal alignment. Angew. Chem. Int. Ed. 51, 7990–7993 (2012)

    Google Scholar 

  110. W. Zheng, C.-Y. Chiang, I. Underwood, Hybrid molecular orientation of sandwich-type structure discogen hexaalkoxydibenzo[a, c]phenazine on the surfaces modified using silane self-assembled monolayers. Mol. Cryst. Liq. Cryst. 540, 94–101 (2011)

    Google Scholar 

  111. W. Zheng, C.-Y. Chiang, Y.-T. Hu, C.W. Ong, Effect of surface free energy on orientational assembly of hexaazatrinaphthalene-based discotic mesogens in sandwich-type structure. Jpn. J. Appl. Phys. 50, 021701-1-5 (2011)

    Google Scholar 

  112. W. Zheng, Y.-T. Hu, C.-Y. Chiang, C.W. Ong, Orientational packing of a confined discotic mesogens in the columnar phase. Int. J. Mol. Sci. 11, 943–955 (2010)

    Google Scholar 

  113. V.D. Cupere, J. Tant, P. Viville, R. Lazzaroni, W. Osikowicz, W.R. Salaneck, Y.H. Geerts, Effect of interface on the alignment of a discotic liquid crystalline phthalocyanine. Langmuir 22, 7798–7806 (2006)

    Google Scholar 

  114. Z.H. Al-Lawati, R.J. Bushby, S.D. Evans, Alignment of a columnar hexagonal discotic liquid crystal on self-assembled monolayers. J. Phys. Chem. C 117, 7533–7539 (2013)

    Google Scholar 

  115. S. Sergeyev, J. Levin, J.-Y. Balandier, E. Pouzet, Y.H. Geerts, Homeotropic alignment of a mesogenic phthalocyanine depends on the nature of interactions with the surface. Mendeleev Commun. 19, 185–186 (2009)

    Google Scholar 

  116. T. Kajitani, Y. Suna, A. Kosaka, T. Osawa, S. Fujikawa, M. Takata, T. Fukushima, T. Aida, o-Phenylene octamers as surface modifiers for homeotropic columnar ordering of discotic liquid crystals. J. Am. Chem. Soc. 135, 14564–14567 (2013)

    Google Scholar 

  117. D. Miyajima, K. Tashiro, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Liquid crystalline corannulene responsive to electric field. J. Am. Chem. Soc. 131, 44–45 (2009)

    Google Scholar 

  118. D. Miyajima, F. Araoka, H. Takezoe, J. Kim, K. Kato, M. Takata, T. Aida, Electric-field-responsive handle for large-area orientation of discotic liquid-crystalline molecules in millimeter-thick films. Angew. Chem. Int. Ed. 50, 7865–7869 (2011)

    Google Scholar 

  119. V. Duzhko, K.D. Singer, Self-assembled fibers of a discotic phthalocyanine derivative: internal structure, tailoring of geometry and alignment by a direct current electric field. J. Phys. Chem. C 111, 27–31 (2007)

    Google Scholar 

  120. W. Wang, X. Liu, J. Pu, Electric-field response of discotic hexabenzocoronene(HBC) liquid crystals. Molecules 16, 9101–9108 (2011)

    Google Scholar 

  121. H. Monobe, K. Awazu, Y. Shimizu, Change of liquid-crystal domains by vibrational excitation for a columnar mesophase. Adv. Mater. 12, 1495–1499 (2000)

    Google Scholar 

  122. H. Monobe, K. Awazu, Y. Shimizu, Alignment control of a columnar liquid crystal for a uniformly homeotropic domain using circularly polarized infrared irradiation. Adv. Mater. 18, 607–610 (2006)

    Google Scholar 

  123. H. Monobe, Y. Shimizu, Anisotropic photoconduction of triphenylene-based DLC in aligned domains by wavelength tunable CO2 laser irradiation. Mol. Cryst. Liq. Cryst. 542, 151–157 (2011)

    Google Scholar 

  124. H. Monobe, K. Kiyohara, M. Heya, K. Awazu, Y. Shimizu, An infrared technique for alignment control of discotic liquid crystals: a possible fabrication technology for organic micro/nano electronic devices. Mol. Cryst. Liq. Cryst. 397, 59–65 (2003)

    Google Scholar 

  125. H. Monobe, K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, Y. Shimizu, Infrared photoinduced alignment change for triphenylene-based columnar liquid crystals by using free electron laser. Thin Solid Films 438–439, 418–422 (2003)

    Google Scholar 

  126. H. Monobe, H. Hori, M. Heya, K. Awazu, Y. Shimizu, Homeotropic alignment change for discotics in plastic columnar mesophase by infrared irradiation. Thin Solid Films 499, 259–262 (2006)

    ADS  Google Scholar 

  127. H. Monobe, K. Awazu, Y. Shimizu, Alignment change of hexahexyloxythiotriphenylene in the helical columnar phase by infrared laser irradiation. Thin Solid Films 518, 762–766 (2009)

    ADS  Google Scholar 

  128. M. Cavallini, A. Calo, P. Stoliar, J.C. Kengne, S. Martins, F.C. Matacotta, F. Quist, G. Gbabode, N. Dumont, Y.H. Geerts, F. Biscarini, Lithographic alignment of discotc liquid crystals: a new time-temperature integrating framework. Adv. Mater. 21, 4688–4691 (2009)

    Google Scholar 

  129. E. Pouzet, V.D. Cupere, C. Heintz, J.W. Andereasen, D.W. Breiby, M.M. Nielsen, P. Viville, R. Lazzaroni, G. Gbabode, Y.H. Geerts, Homeotropic alignment of a discotic liquid crystal induced by a sacrificial layer. J. Phys. Chem. C 113, 14398–14406 (2009)

    Google Scholar 

  130. P. Samori, X. Yin, N. Tchebotareva, Z. Wang, T. Pakula, F. Jackel, M.D. Watson, A. Venturini, K. Mullen, J.P. Rabe, Self-assembly of electron donor-acceptor dyads into ordered architectures in two and three dimensions: surface patterning and columnar “double cables”. J. Am. Chem. Soc. 126, 3567–3575 (2004)

    Google Scholar 

  131. X. Qiu, C. Wang, Q. Zeng, B. Xu, S. Yin, H. Wang, S. Xu, C. Bai, Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J. Am. Chem. Soc. 122, 5550–5556 (2000)

    Google Scholar 

  132. N. Katsonis, A. Marchenko, D. Fichou, Substrate-induced pairing in 2,3,6,7,10,11-hexakis-undecalkoxy-triphenylene self-assembled monolayers on Au (111). J. Am. Chem. Soc. 125, 13682–13683 (2003)

    Google Scholar 

  133. J.-C. Gabriel, N.B. Larsen, M. Larsen, N. Harrit, J.S. Pedersen, K. Schaumburg, K. Bechgaard, Ordering of the disk-like 2,3,6,7,10,11-hexakis(hexylthio)triphenylene in solution and at a liquid-solid interface. Langmuir 12, 1690–1692 (1996)

    Google Scholar 

  134. F. Charra, J. Cousty, Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal. Phys. Rev. Lett. 80, 1682–1685 (1998)

    ADS  Google Scholar 

  135. P. Samori, N. Severin, C.D. Simpson, K. Mullen, J.P. Rabe, Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbon. J. Am. Chem. Soc. 124, 9454–9457 (2002)

    Google Scholar 

  136. R. Friellein, X. Crispin, C.D. Simpson, M.D. Watson, F. Jackel, W. Osikowicz, S. Marciniak, M.P. de Jong, P. Samori, S.K.M. Jonsson, M. Fahlman, K. Mullen, J.P. Rabe, W.R. Salaneck, Electronic structure of highly ordered films of self-assembled graphitic nanocolumns. Phys. Rev. B 68, 195414 1-7 (2003)

    Google Scholar 

  137. J. Kim, N. Yamasaki, T. Hayashi, H. Yoshida, H. Moritake, A. Fujii, Y. Shimizu, M. Ozaki, High-quality planar alignment of discotic liquid crystals using oscillating shear. Appl. Phys. Express 6(061702), 1–3 (2013)

    Google Scholar 

  138. D. Goldfarb, Z. Luz, H. Zimmermann, A deuterium NMR study of the discotic mesophase of hexa-hexyloxytriphenylene. J. Phys. 42, 1303–1311 (1981)

    Google Scholar 

  139. W. Kranig, C. Boeffel, H.W. Spiess, Deuterium nuclear magnetic resonance studies of molecular motions and alignment process of discotic liquid-crystalline compounds based on substituted triphenylenes. Macromolecules 23, 4061–4067 (1990)

    ADS  Google Scholar 

  140. I.O. Shklyarevskiy, P. Jonkeejim, N. Stutzmann, D. Wasserberg, H.J. Wondergem, P.C.M. Christianen, A.P.H.J. Schenning, D.M. de Leeuw, Z. Tomovic, J. Wu, K. Mullen, J.C. Mann, High anisotropy of the field effect transistor mobility in magnetically aligned discotic liquid crystalline semiconductors. J. Am. Chem. Soc. 127, 16233–16237 (2005)

    Google Scholar 

  141. J.-H. Lee, S.-M. Choi, B.D. Pate, M.H. Chisholm, Y.-S. Han, Magnetic uniaxial alignment of the columnar superstructure of discotic metallomesogens over the centimeter length scale. J. Mater. Chem. 16, 2785–2791 (2006)

    Google Scholar 

  142. J.-H. Lee, H.-S. Kim, B.D. Pate, S.-M. Choi, Magnetic alignment of discotic liquid crystals on substrates. Phys. B 385–386, 798–800 (2006)

    Google Scholar 

  143. H.-S. Kim, S.-M. Choi, B.D. Pate, P.G. Park, Effect of film thickness on the columnar packing structures of discotic supramolecules in thin films. ChemPhysChem 10, 2642–2646 (2009)

    Google Scholar 

  144. H.-S. Kim, S.-M. Choi, J.-H. Lee, P. Busch, S.J. Koza, E.A. Verploegen, B.D. Pate, Uniaxially oriented, highly ordered, large area columnar superstructures of discotic supramolecules using magnetic field and surface interactions. Adv. Mater. 20, 1105–1109 (2008)

    Google Scholar 

  145. T.D. Choudhury, N.V.S. Rao, R. Tenent, J. Blackburn, B. Gregg, I.I. Smalyukh, Homeotropic alignment and director structure in thin films of triphenylamine-based discotic liquid crystals controlled by supporting nanostructured substrates and surface confinement. J. Phys. Chem. B 115, 609–617 (2011)

    Google Scholar 

  146. S. Takami, S. Furumi, Y. Shirai, Y. Sakka, Y. Wakayama, Impact of magnetic field on molecular alignment and electrical conductivity in phthalocyanine nanowires. J. Mater. Chem. 22, 8629–8633 (2012)

    Google Scholar 

  147. S. Zimmermann, J.H. Wendorff, C. Weder, Uniaxial orientation of columnar discotic liquid crystals. Chem. Mater. 14, 2218–2223 (2002)

    Google Scholar 

  148. A.M. van de Craats, N. Stutzmann, O. Bunk, M.M. Nielsen, M. Watson, K. Mullen, H.D. Chanzy, H. Sirringhaus, R.H. Friend, Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495–499 (2003)

    Google Scholar 

  149. E. Charlet, E. Grelet, Anisotropic light absorption, refractive indices and orientational order parameter of unidirectionally aligned columnar liquid crystal films. Phys. Rev. E 78, 041707-1-8 (2008)

    Google Scholar 

  150. M. Funahashi, A. Sonoda, High electron mobility in a columnar phase of liquid-crystalline perylene tetracarboxylic bisimide bearing oligosiloxane chains. J. Mater. Chem. 22, 25190–25197 (2012)

    Google Scholar 

  151. R.I. Gearba, D.V. Anokhin, A.I. Bondar, W. Bras, M. Jahr, M. Lehmann, D.A. Ivanov, Homeotropic alignment of columnar liquid crystals in open films by means of surface nanopatterning. Adv. Mater. 19, 815–820 (2007)

    Google Scholar 

  152. Y. Mindyuk, P.A. Heiney, Structural studies of Langmuir films of disc-shaped molecules. Adv. Mater. 11, 341–344 (1999)

    Google Scholar 

  153. T. Bjornholm, T. Hassenkam, N. Reitzel, Supramolecular organization of highly conducting organic thin films by the Langmuir-Blodgett technique. J. Mater. Chem. 9, 1975–1990 (1999)

    Google Scholar 

  154. H. Eichhorn, D.W. Bruce, D. Wohrle, Amphitropic mesomorphic phthalocyanines—a new approach to highly ordered layers. Adv. Mater. 10, 419–422 (1998)

    Google Scholar 

  155. O. Karthaus, H. Ringsdorf, V.V. Tsukruk, J.H. Wendorff, Columnar ordering of liquid-crystalline discotics in Langmuir-Blodget films. Langmuir 8, 2279–2283 (1992)

    Google Scholar 

  156. S. Kubowicz, U. Pietsch, M.D. Watson, N. Tchebotareva, K. Mullen, A.F. Thunemann, Thin layers of columns of an amphiphilic hexa-peri-hexabenzocoronene at silicon wafer surface. Langmuir 19, 5036–5041 (2003)

    Google Scholar 

  157. N. Reitzel, T. Hassenkam, K. Balashev, T.R. Jensen, P.B. Howes, K. Kjaer, A. Fechtenkotter, N. Tchebottareva, S. Ito, K. Mullen, T. Bjornholm, Langmuir and Langmuir-Blodget films of amphiphilic hexa-peri-hexabenzocoronene: new phase transitions and electronic properties by pressure. Chem. Eur. J. 7, 4894–4901 (2001)

    Google Scholar 

  158. D. Janietz, R.C. Ahuja, D. Mobius, Langmuir monolayers of sheet-shaped multialkyne amphiphiles. Langmuir 13, 305–309 (1997)

    Google Scholar 

  159. A. Julita, D. Janietz, J. Reiche, H. Lemmetyinen, Photophysical investigation of Langmuir-Blodget films of amphiphilic discotic penta-alkynes. Thin Solid Films 268, 121–129 (1995)

    ADS  Google Scholar 

  160. J. Reiche, R. Dietel, D. Janietz, H. Lemmetyinen, L. Brehmer, Edge-on Langmuir-Blodget multilayers derived from disc-shaped multiyne mesogens. Thin Solid Films 226, 265–269 (1992)

    Google Scholar 

  161. A. Angelova, J. Reiche, R. Ionov, D. Janietz, L. Brehmer, Control of the structure of Langmuir-Blodget films of a discotic liquid crystalline compound via the subphase composition and the adjacent molecular environment. Thin Solid Films 242, 289–294 (1994)

    ADS  Google Scholar 

  162. M. Ahmida, S. Dufour, H.-S. Li, H. Kayal, R. Schmidt, C.E. DeWolf, S. Holger Eichhorn, Face- and edge-on orientations of octa-acid and –alcohol substituted tetraazaporphyrins in Langmuir and Langmuir-Blodgett monolayers. Soft Matter 9, 811–819 (2013)

    Google Scholar 

  163. N. Boden, R.J. Bushby, P.S. Martin, S.D. Evans, R.W. Owens, D.A. Smith, Triphenylene-based discotic liquid crystals as self-assembled monolayers. Langmuir 15, 3790–3797 (1999)

    Google Scholar 

  164. H. Schonherr, F.J.B. Kremer, S. Kumar, J.A. Rego, H. Wolf, H. Ringsdorf, M. Jaschke, H.-J. Butt, E. Bamberg, Self-assembled monolayers of discotic liquid crystalline thioethers, discoid disulphides and thiols on gold: molecular engineering of ordered surfaces. J. Am. Chem. Soc. 118, 13051–13057 (1996)

    Google Scholar 

  165. M. Duati, C. Grave, N. Tcbeborateva, J. Wu, K. Mullen, A. Shaporenko, M. Zharnikov, J.K. Kriebel, G.M. Whitesides, M.A. Rampi, Electron transport across hexa-peri-hexabenzocoronene units in a metal-self-assembled monolayer-metal junction. Adv. Mater. 18, 329–333 (2006)

    Google Scholar 

  166. D. Kafer, A. Basir, X. Dou, G. Witte, K. Mullen, C. Woll, Evidence for band-like transport in graphene-based organic monolayers. Adv. Mater. 22, 384–388 (2010)

    Google Scholar 

  167. L. Piot, C. Marie, X. Dou, X. Feng, K. Mullen, D. Fichou, Growth of long, highly stable, and densely packed worm-like nanocolumns of hexa-peri-hexabenzocoronenes via chemisorptions on Au(111). J. Am. Chem. Soc. 131, 1378–1379 (2009)

    Google Scholar 

  168. L. Piot, C. Marie, X. Feng, K. Mullen, D. Fichou, Hierarchical self-assembly of edge-on nanocolumnar superstructures of large disc-like molecules. Adv. Mater. 20, 3854–3858 (2008)

    Google Scholar 

  169. M. Mansueto, S. Sauer, M. Butschies, M. Kaller, A. Baro, R. Woerner, N.H. Hansen, G. Tovar, J. Pflaum, S. Laschat, Triphenylene silanes for direct surface anchoring in binary mixed self-assembled monolayers. Langmuir 28, 8399–8407 (2012)

    Google Scholar 

  170. A. Tracz, J.K. Jeszka, M.D. Watson, W. Pisula, K. Mullen, T. Pakula, Uniaxial alignment of the columnar super-structure of a hexa(alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003)

    Google Scholar 

  171. W. Pisula, Z. Tomovic, M. Stepputat, U. Kolb, T. Pakula, K. Mullen, Uniaxial alignment of polycyclic aromatic hydrocarbons by solution processing. Chem. Mater. 17, 2641–2647 (2005)

    Google Scholar 

  172. D.W. Breiby, O. Bunk, W. Pisula, T.I. Solling, A. Tracz, T. Pakula, K. Mullen, M.M. Nielsen, Structure of zone-cast HBC-C12H25 films. J. Am. Chem. Soc. 127, 11288–11293 (2005)

    Google Scholar 

  173. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Mullen, A zone-casting technique for device fabrication of field-effect transistors based discotic hexa-per-hexabenzocoronene. Adv. Mater. 17, 684–689 (2005)

    Google Scholar 

  174. A. Tracz, T. Makowski, S. Masirek, W. Pisula, Y.H. Geerts, Macroscopically aligned films of discotic phthalocyanine by zone casting. Nanotechnology 18(485303), 1–5 (2007)

    Google Scholar 

  175. C.-Y. Liu, A.J. Bard, In-situ regrowth and purification by zone melting of organic single crystal thin films yielding significantly enhanced optoelectronic properties. Chem. Mater. 12, 2353–2362 (2000)

    Google Scholar 

  176. W. Pisula, M. Kastler, D. Wasserfallen, T. Pakula, K. Mullen, Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove tailed alkyl substituents. J. Am. Chem. Soc. 126, 8074–8075 (2004)

    Google Scholar 

  177. S. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang, M.L. Steigerwald, C. Nuckolls, Molecular wires from contorted aromatic compounds. Angew. Chem. Int. Ed. 44, 7390–7394 (2005)

    Google Scholar 

  178. S. Xiao, J. Tang, T. Beetz, X. Guo, N. Tremblay, T. Siegrist, Y. Zhu, M. Stegerwald, C. Nuckolls, Transferring self-assembled, nanoscale cables into electrical devices. J. Am. Chem. Soc. 128, 10700–107001 (2006)

    Google Scholar 

  179. M. Kastler, W. Pisula, D. Wasserfallen, T. Pakula, K. Mullen, Influence of alkyl substituents on the solution- and surface-organization of hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 127, 4286–4296 (2005)

    Google Scholar 

  180. G.D. Luca, A. Liscio, F. Nolde, L.M. Scolaro, V. Palermo, K. Mullen, P. Samori, Self-assembly of discotic molecules into mesoscopic crystals by solvent-vapour annealing. Soft Matter 4, 2064–2070 (2008)

    ADS  Google Scholar 

  181. A. Cristadoro, G. Lieser, H.J. Rader, K. Mullen, Field-force alignment of disc-type pi systems. ChemPhysChem 8, 586–591 (2007)

    Google Scholar 

  182. A. Calo, P. Stoliar, M. Cavallini, S. Sergeyev, Y.H. Geerts, F. Biscarini, Monolayer control of discotic liquid crystal by electromigration of dewetted layers in thin film devices. J. Am. Chem. Soc. 130, 11953–11958 (2008)

    Google Scholar 

  183. J.P. Bramble, D.J. Tate, D.J. Revill, K.H. Sheikh, J.R. Henderson, F. Liu, X. Zeng, G. Ungar, R.J. Bushby, S.D. Evans, Planar alignment of columnar discotic liquid crystals by isotropic phase dewetting on chemically patterned surfaces. Adv. Funct. Mater. 20, 914–920 (2010)

    Google Scholar 

  184. H.J. Rader, A. Rouhanipour, A.M. Talarico, V. Palermo, P. Samori, K. Mullen, Processing of giant graphene molecules by soft-landing mass spectrometry. Nat. Mater. 5, 276–280 (2006)

    ADS  Google Scholar 

  185. G. Gbabode, N. Dumont, F. Quist, G. Schweicher, A. Moser, P. Viville, R. Lazzaroni, Y.H. Geerts, Substrate-induced crystal plastic phase of a discotic liquid crystals. Adv. Mater. 24, 658–662 (2012)

    Google Scholar 

  186. M. Steinhart, S. Zimmermann, P. Goring, A.K. Schaper, U. Gosele, C. Weder, J.H. Wendorff, Liquid crystalline nanowires in porous alumina: geometric confinement versus influence of pore walls. Nano Lett. 5, 429–434 (2005)

    ADS  Google Scholar 

  187. M. Steinhart, S. Murano, A.K. Schaper, T. Ogawa, M. Tsuji, U. Gosele, C. Weder, J.H. Wendorff, Morphology of polymer/liquid-crystal nanotubes: influence of confinement. Adv. Funct. Mater. 15, 1656–1664 (2005)

    Google Scholar 

  188. W. Pisula, M. Kastler, D. Wasserfallen, R.J. Davies, M.-C. Garcia-Gutierrez, K. Mullen, From macro- to nanoscopic templating with nanographene. J. Am. Chem. Soc. 128, 14424–14425 (2006)

    Google Scholar 

  189. H. Duran, B. Hartmann-Azanza, M. Steinhart, D. Gehrig, F. Laquai, X. Feng, K. Mullen, H.-J. Butt, G. Floudas, Arrays of aligned supramolecular wires by macroscopic orientation of columnar discotic mesophases. ACS Nano 6, 9359–9365 (2012)

    Google Scholar 

  190. P.-O. Mouthuy, S. Melinte, Y.H. Geerts, A.M. Jonas, Uniaxial alignment of nanoconfined columnar mesophase. Nano Lett. 7, 2627–2632 (2007)

    ADS  Google Scholar 

  191. P.-O. Mouthuy, S. Melinte, Y.H. Geerts, B. Nysten, A.M. Jonas, Nanocontrolled bending of discotic columns by spiral networks. Small 4, 728–732 (2008)

    Google Scholar 

  192. C.V. Cerclier, M. Ndao, R. Busselez, R. Lefort, E. Grelet, P. Huber, A.V. Kityk, L. Noirez, A. Schonhals, D. Morineau, Structure and phase behavior of a discotic columnar liquid crystal confined in nanochannels. J. Phys. Chem. C 116, 18990–18998 (2012)

    Google Scholar 

  193. C.-Y. Chiang, I. Underwood, W. Zheng, Controlling orientation direction of discotic columns assembled in microtrenches. Mol. Cryst. Liq. Cryst. 553, 185–192 (2012)

    Google Scholar 

  194. J. Cattle, P. Bao, J.P. Bramble, R.J. Bushby, S.D. Evans, J.E. Lydon, D.J. Tate, Controlled planar alignment of discotic liquid crystals in microchannels made using SU8 photoresist. Adv. Funct. Mater. 23, 5997–6006 (2013)

    Google Scholar 

Download references

Acknowledgments

The preparation of this chapter benefited from the support to Quan Li by the Department of Defense Multidisciplinary University Research Initiative (AFOSR MURI FA9550-12-1-00370 and FA9550-06-1-0337), the Air Force Office of Scientific Research (AFOSR FA9550-09-1-0193 and FA9550-09-1-0254), the National Science Foundation (NSF IIP 0750379), the National Aeronautics and Space Adminstration (NASA), the Department of Energy (DOE DE-SC0001412), Ohio Third Frontier, and the Ohio Board of Regents under its Research Challenge program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © The Author(s)

About this chapter

Cite this chapter

Bisoyi, H.K., Li, Q. (2014). Directing Self-Organized Columnar Nanostructures of Discotic Liquid Crystals for Device Applications. In: Li, Q. (eds) Nanoscience with Liquid Crystals. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04867-3_7

Download citation

Publish with us

Policies and ethics