Skip to main content

Holographic Liquid Crystals for Nanophotonics

  • Chapter
  • First Online:
Nanoscience with Liquid Crystals

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Nanotechnology offers a new paradigm in ways of controlling light in optical systems. Optically enhanced effects such plasmonic resonances and nano-antennas combined with diffraction and photonic bandgap effects can create new mechanisms to enhance the performance of modulation technologies in applications such as three dimensional displays. The power of these optical effects can then be made even more effective by adding in a variable refractive index material such a liquid crystal. This allows the optical properties to be tuned or modulated and creates a new class of optical devices which utilise features on the nano-scale. This chapter pulls together the various strands that have been developed in this area to make an initial investigation into these types of devices. The power of diffraction is introduced to propagate light in a manner which ideally suits nanotechnology. This is then combined with the algorithms used to create computer generated holograms to demonstrate that the diffraction process is indeed the key to the optical control mechanisms at length scales of the order of the wavelength of the light. The key properties of carbon nanotubes and liquid crystals are then introduced to provide the means to create enhanced diffraction through resonant effects which can then be tuned through the variable refractive index properties of the liquid crystals. The most important property of the nanotechnology is the ability to have electrically conductive structures on the nanometre length scale, which allows the rules of electric field interaction to ne manipulated by plasmonics. These effects are demonstrated using both conducting multiwall carbon nanotubes as well as silver nano-antennas. Plasmonic resonance in arrays of nanotubes show the predicted wavelength cut off due to a negative dielectric constant. The same effects are then linked with diffraction to create quasi-crystalline diffraction patterns and fully synthetic computer generated holograms. These effects are expanded further with the silver nano-antennas, where the enhanced resonance effects allow the control of polarisation as well as the wavefront through diffraction. Finally the liquid crystal element of variable refractive index is added to the devices to control the resonance and tune its performance. While this is still at a very early stage of research, it already demonstrates the power and versatility created by the combination of these different optical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Brown, A. Lohmann, Complex spatial filtering with binary masks. Appl. Opt. 5, 967–969 (1966)

    Article  ADS  Google Scholar 

  2. W. Lee, Sampled Fourier transform hologram generated by computer. Appl. Opt. 9, 639–643 (1970)

    Article  ADS  Google Scholar 

  3. A. Jendral, R. Brouer, O. Bryngdahl, Synthetic image holograms: computation and properties. Opt. Comm. 109, 47–53 (1994)

    Article  ADS  Google Scholar 

  4. M. Stanley et al., 100-Megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system. Proc. SPIE 5005, 247–258 (2003)

    Article  Google Scholar 

  5. R.H.-Y. Chen, T.D. Wilkinson, Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterisation for 3D display. Appl. Opt. 48, 4246–4255 (2009)

    Article  ADS  Google Scholar 

  6. D. Gabor, A new microscopic principle. Nature 161, 777 (1948)

    Google Scholar 

  7. D. Gabor, Microscopy by reconstructed wave-fronts. Proc. Roy. Soc. (London) A 197, 454 (1949)

    Google Scholar 

  8. E.N. Leith, J. Upatnieks, Wavefront reconstruction with diffused illumination and three-dimensional objects. J. Opt. Soc. Am. 54, 1295–1301 (1964)

    Article  ADS  Google Scholar 

  9. S. Tay, P.-A. Blanche, R. Voorakaranam, A.V. Tunc, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R.A. Norwood, M. Yamamoto, N. Peyghambarian, An updatable holographic three-dimensional display. Nature 451, 694–698 (2008)

    Article  ADS  Google Scholar 

  10. T.D. Wilkinson, X. Wang, K.B.K. Teo, W.I. Milne, Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices. Adv. Mater. 20, 363–366 (2008)

    Article  Google Scholar 

  11. H. Butt, Q. Dai, P. Farah, T. Butler, T.D. Wilkinson, J.J. Baumberg, G.A.J. Amaratunga, Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl. Phys. Lett. 97, 163102 (2010)

    Article  ADS  Google Scholar 

  12. J.W. Goodman, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill Companies, New York, 2005), pp. 55–58

    Google Scholar 

  13. R.G. Wilson, Fourier Series and Optical Transform Techniques in Contemporary Optics (Wiley, New York, 1995)

    Google Scholar 

  14. H. Dammann, K. Görtler, High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3, 312–315 (1971)

    Article  ADS  Google Scholar 

  15. M.A. Seldowitz, J.P. Allebach, D.W. Sweeney, Synthesis of digital holograms by direct binary search. Appl. Opt. 26, 2788–2798 (1987)

    Article  ADS  Google Scholar 

  16. R.W. Gerchberg, W.O. Saxon, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  17. J.H. Holland, Genetic algorithms. Sci. Am. 267, 66–72 (1992)

    Google Scholar 

  18. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    Article  ADS  Google Scholar 

  19. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  20. K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, D.G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, Uniform patterned growth of carbon nanotubes without surface carbon. Appl. Phys. Lett. 79, 1534–1536 (2001)

    Article  ADS  Google Scholar 

  21. W.I. Milne, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, S.B. Lee, D.G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J.P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, V.T. Binh, Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition. Diam. Relat. Mater. 12, 422–428 (2003)

    Article  ADS  Google Scholar 

  22. P.J. Collings, M. Hird, Introduction to Liquid Crystals, Chemisrty and Physics (Taylor & Francis Group, London, 1998)

    Google Scholar 

  23. M.F. Lin, F.L. Shyu, R.B. Chen, Optical properties of well-aligned multiwalled carbon nanotube bundles. Phys. Rev. B 61, 14114 (2000)

    Article  ADS  Google Scholar 

  24. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter 10, 4785–4809 (1998)

    Google Scholar 

  25. P. Drude, Zur Elektronentheorie der metalle. Ann. Phys. 306, 566 (1900)

    Article  Google Scholar 

  26. P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  27. H. Butt, Q. Dai, R. Rajesekharan, T.D. Wilkinson, G.A.J. Amaratunga, Plasmonic band gaps and waveguide effects in carbon nanotube arrays based metamaterials. ACS Nano 5, 9138–9143 (2011)

    Article  Google Scholar 

  28. Y. Montelongo, H. Butt, T. Butler, G.A.J. Amaratunga, T.D. Wilkinson, Computer generated holograms for carbon nanotube arrays. Nanoscale 5, 4217–4222 (2013)

    Article  ADS  Google Scholar 

  29. H. Butt, T. Butler, Y. Montelongo, R. Ranjith, G.A.J. Amaratunga, T.D. Wilkinson, Continuous diffraction patterns from circular arrays of carbon nanotubes’. Appl. Phys. Lett. 101, 251102 (2012)

    Article  ADS  Google Scholar 

  30. M.A. Kaliteevski, S. Brand, R.A. Abram, T.F. Krauss, R. De La Rue, P. Millar, Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure. Nanotechnology 11, 274 (2000)

    Google Scholar 

  31. H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S.G. Shiva-Reddy, G.A. Amaratunga, T.D. Wilkinson, Carbon nanotube based high resolution holograms. Adv. Mater. (2012). doi:10.1002/adma.201202593

    Google Scholar 

  32. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  33. G.W. Bryant, F.J. Garcia de Abajo, J. Aizpurua, Mapping the plasmon resonances of metallic nanoantennas. Nano Lett. 8, 631–636 (2008)

    Article  ADS  Google Scholar 

  34. L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)

    Article  ADS  Google Scholar 

  35. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, Y. Ichioka, Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory. Appl. Opt. 39, 3531–3536 (2000)

    Article  ADS  Google Scholar 

  36. S. Larouche, Y.-J. Tsai, T. Tyler, N.M. Jokerst, D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012)

    Article  ADS  Google Scholar 

  37. W. Khunsin, B. Brian, J. Dorfmüller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, K. Kern, Long-distance indirect excitation of nanoplasmonic resonances. Nano Lett. 11, 2765–2769 (2011)

    Article  Google Scholar 

  38. P. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)

    Article  Google Scholar 

  39. T. Hessler, M. Rossi, R.E. Kunz, M.T. Gale, Analysis and optimization of fabrication of continuous-relief diffractive optical elements. Appl. Opt. 37, 4069–4079 (1998)

    Article  ADS  Google Scholar 

  40. K.R. Catchpole, A. Polman, Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Wilkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © The Author(s)

About this chapter

Cite this chapter

Wilkinson, T.D., Butt, H., Montelongo, Y. (2014). Holographic Liquid Crystals for Nanophotonics. In: Li, Q. (eds) Nanoscience with Liquid Crystals. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04867-3_1

Download citation

Publish with us

Policies and ethics