Skip to main content

Abstract

Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. In this Chapter, a wide review on Ground-Penetrating Radar (GPR) antennas is given. Firstly, the general characteristics of GPR antennas are resumed and the requirements they have to satisfy are listed: these are somehow unique and very different than in conventional radar antennas, since GPR antennas operate in a strongly demanding environment, in close proximity to or at a limited distance from the natural or manmade investigated area. Subsequently, an overview on the most frequently used GPR antennas, for both pulsed and stepped-frequency radar systems, is provided; recent studies concerning innovative solutions are presented and information on antenna arrays for GPR applications is included, as well. The Chapter continues with a census of commercial antennas of a number of GPR manufacturers, where the centre frequencies and general characteristics of the antennas available on the market are schematically organised in tables. Aided by measurements and powerful computer modelling techniques, GPR antenna designers are increasingly able to predict and understand the performance of proposed design in realistic electromagnetic environments: the Chapter includes two sections reviewing techniques for the experimental characterisation and numerical modelling of GPR antennas. Finally, conclusions are drawn and research perspectives in the field of GPR antennas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fractional bandwidth is defined as 2(f max − f min)/(f max + f min), where f max and f min are the minimum and maximum frequencies of operation, respectively.

References

  • Ajith, K.K., Bhattacharya, A.: Improved ultra-wide bandwidth bow-tie antenna with metamaterial lens for GPR applications. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 739–744, Oct 2014

    Google Scholar 

  • Alkhalifeh, K., Craeye, C., Lambot, S.: Design of a 3D UWB linear array of Vivaldi antennas devoted to water leaks detection. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 783–786, Oct 2014

    Google Scholar 

  • Biancheri-Astier, M., Saintenoy, A., Ciarletti, V.: Development of an Agile beam georadar prototype for the investigation of pLanetary environment (AGILE). In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 837–840, Oct 2014

    Google Scholar 

  • Bourgeois, J., Smith, G.: A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Trans. Geosci. Remote Sens. 34(1), 36–44 (1996)

    Article  Google Scholar 

  • Brown, G.H., Woodward, O.M.: Experimentally determined radiation characteristics of conical and triangular antennas. RCA Rev. 13, 425–452 (1952)

    Google Scholar 

  • Cassidy, N.: The application of mathematical modelling in the interpretation of near-surface archaeological ground-penetrating radar. Ph.D. thesis, Keele University, Keele (2001)

    Google Scholar 

  • Christopoulos, C.: The Transmission Line Modeling Method: TLM. IEEE Press, Piscataway (1995)

    Book  Google Scholar 

  • Daniels, D.J.: Antennas. Chap. 5 In: Ground Penetrating Radar. IEE Radar, Sonar, Navigation and Avionics Series, 2nd edn. pp. 131–183. The Institution of Engineering and Technology (2004)

    Google Scholar 

  • Daniels, D.J.: Antennas. Chap. 4 In: Ground Penetrating Radar Theory and Applications, pp. 99–133. Elsevier Science, Amsterdam (2009)

    Google Scholar 

  • Daniels, D.J.: Antennas. Chap. 3 In: EM Detection of Concealed Targets, Microwave and Optical Engineering, pp. 83–127. Wiley-IEEE Press, USA (2010)

    Google Scholar 

  • Di Vico, M., Frezza, F., Pajewski, L., Schettini, G.: Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution. IEEE Trans. Antennas Propag. 53(2), 719–727 (2005)

    Article  Google Scholar 

  • Eide, E., Valand, P.A., Sala, J.: Ground-coupled antenna array for step-frequency GPR. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 756–761, Oct 2014

    Google Scholar 

  • Eide, E., Kiessling, T., Typpo, J.: Wideband antenna array for step-frequency ground penetrating radar. In: Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR 2012), pp. 152–155 (2012)

    Google Scholar 

  • Francese, R.G., Finzi, E., Morelli, G.: 3-D high-resolution multi-channel radar investigation of a Roman village in Northern Italy. J. Appl. Geophys. 67(1), 44–51 (2009)

    Article  Google Scholar 

  • Frezza, F., Mangini, F., Pajewski, L., Schettini, G., Tedeschi, N.: Spectral domain method for the electromagnetic scattering by a buried sphere. J. Opt. Soc. Am. A 30(4), 783–790 (2013)

    Article  Google Scholar 

  • Giannakis, I., Davidson, N., Giannopoulos, A.: Realistic modelling of ground penetrating radar for landmine detection using FDTD. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 954–959, Oct. 2014 (Giannakis et al, 2014a)

    Google Scholar 

  • Giannakis, I., Giannopoulos, A., Pajewski, L.: Numerical modelling of ground penetrating radar antennas. In: Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2014, 27 April–2 May 2014, Vienna, Austria, article ID EGU2014–1553 (Giannakis et al, 2014b)

    Google Scholar 

  • Giannopoulos, A.: The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground probing radar. Ph.D. thesis, Department of Electronics, University of York, York, UK (1997)

    Google Scholar 

  • Giannopoulos, A.: Modelling ground penetrating radar by GprMax. Constr. Build. Mater. 19, 755–762 (2005)

    Article  Google Scholar 

  • Gibson, P.J.: The Vivaldi aerial. In: Proceedings of the 9th European Microwave Conference, p. 736 (1979)

    Google Scholar 

  • Harrington, F.R.: Field Computation by Moment Methods, reprinted edn. Wiley-IEEE Press, Piscataway (1993)

    Book  Google Scholar 

  • Huang, Z., Demarest, K., Plumb, R.: An FDTD/MoM hybrid technique for modeling complex antennas in the presence of heterogeneous grounds. IEEE Trans. Geosci. Remote Sens. 37(6), 2692–2698 (1999)

    Article  Google Scholar 

  • King, R.W., Smith, G.S.: Antennas in Matter. MIT Press, Cambridge (1981)

    Google Scholar 

  • Klysz, G., Ferrieres, X., Balayssac, J., Laurens, S.: Simulation of direct wave propagation by numerical FDTD for a GPR coupled antenna. Nondestr. Test. Eval. Int. 39(4), 338–347 (2006)

    Google Scholar 

  • Holliger, K., Lampe, B., Meier, U., Lambert, M., Green, A.: Realistic modeling of surface ground-penetrating radar antenna systems: where do we stand? In: Proceedings of the 2nd International Workshop on Advanced Ground Penetrating Radar, pp. 45–50 (2003)

    Google Scholar 

  • Jin, J.: The Finite Element Method in Electromagnetics, 3rd edn. Wiley-IEEE Press, Hoboken (2014)

    MATH  Google Scholar 

  • Lacko, P.R., Charmain, C.F., Johnson, M., Ralston, J.M., Bradley, M.R., McCummins, R.: Archimedean-spiral and log-spiral antenna comparison. In: Proceedings of the SPIE, Detection and Remediation Technologies for Mines and Minelike Targets, 4742(VII), pp. 230–236, Aug 2002

    Google Scholar 

  • Lampe, B., Holliger, K.: Numerical modeling of a complete ground-penetrating radar system. Proc. SPIE 4491, 99 (2001)

    Article  Google Scholar 

  • Lampe, B., Holliger, K., Green, A.: A finite-difference time-domain simulation tool for ground-penetrating radar antennas. Geophysics 68(3), 971–987 (2003)

    Article  Google Scholar 

  • Lampe, B., Holliger, K.: Resistively loaded antennas for ground-penetrating radar: a modeling approach. Geophysics 70, K23–K32 (2005)

    Article  Google Scholar 

  • Lenler-Eriksen, H.-R., Meincke, P., Sarri, A., Chatelee, V., Nair, B., Craddock, I.J., Alli, G., Dauvignac, J.-Y., Huang, Y., Lymperopoulos, D., Nilavalan, R.: Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark. In: Proceedings of the IEEE Antennas and Propagation Society International Symposium, 4A, pp. 109–112, 3–8 July 2005

    Google Scholar 

  • Linford, N., Linford, P., Martin, L., Payne, A.: Stepped frequency ground-penetrating radar survey with a multi-element array antenna: results from field application on archaeological sites. Archaeol. Prospection 17, 187–198 (2010)

    Article  Google Scholar 

  • Matera, L., Ciminale, M., Desantis, V., Persico, R., Giannotta, M.T., Alessio, A.: Application of a reconfigurable stepped frequency system to cultural heritage prospecting. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 18–24, Oct 2014

    Google Scholar 

  • Miller, E.K., Landt, J.A.: Short-pulse characteristics of the conical spiral antenna. IEEE Trans. Antennas Propag. 25(5), 621–625 (1977)

    Article  Google Scholar 

  • Moghaddam, M., Yannakakis, E., Chew, W., Randall, C.: Modeling of the subsurface interface radar. J. Electromagn. Waves Appl. 5(1), 17–39 (1991)

    Google Scholar 

  • Monorchio, A., Bretones, A., Mittra, R., Manara, G., Martin, R.: A hybrid time-domain technique that combines the finite element, finite difference and method of moment techniques to solve complex electromagnetic problems. IEEE Trans. Antennas Propag. 52(10), 2666–2674 (2004)

    Article  Google Scholar 

  • Nuzzo, L., Alli, G., Guidi, R., Cortesi, N., Sarri, A., Manacorda, G.: A new densely-sampled ground penetrating radar array for landmine detection. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 969–974, Oct 2014

    Google Scholar 

  • Pastol, Y., Arjavalingam, G., Halbout, J.M.: Transient radiation properties of an integrated equiangular spiral antenna. In: Proceedings of the IEEE Symposium on Antennas and Propagation, pp. 1934–1937. Dallas, Texas (1990)

    Google Scholar 

  • Pereira, M., Fernando Rial, I., Lorenzo, H., Arias, P., Novo, A.: Setting up a GPR system for road evaluation. In: Proceedings of the 11th International Conference on Ground Penetrating Radar, pp. 1–6. Columbus Ohio, USA, 19–22 June 2006

    Google Scholar 

  • Persico, R., Prisco, G.: A reconfigurative approach for SF-GPR prospecting. IEEE Trans. Antennas Propag. 56(8), 2673–2680 (2008)

    Article  Google Scholar 

  • Scheers, B., Piette, M., Vander Vorst, A.: Development of dielectric-filled TEM horn antennas for UWB GPR. In: Proceedings of Millennium Conference on Antennas and Propagation, 2000

    Google Scholar 

  • Shlager, K., Smith, G., Maloney, J.: Optimization of bow-tie antennas for pulse radiation. IEEE Trans. Antennas Propag. 42(7), 975–982 (1994)

    Article  Google Scholar 

  • Shankar, V., Hall, W.F., Mohammadian, A.H.: A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77(5), 709–721 (1989)

    Article  Google Scholar 

  • Simi, A., Manacorda, G., Miniati, M., Bracciali, S., Buonaccorsi, A.: Underground asset mapping with dual-frequency dual-polarized GPR massive array. In: Proceedings of 13th International Conference on Ground Penetrating Radar, June 2010

    Google Scholar 

  • Simi, A., Manacorda, G., Benedetto, A.: Bridge deck survey with high resolution ground penetrating radar. In: Proceedings of the 14th International Conference on Ground Penetrating Radar, June 2012

    Google Scholar 

  • Taflove, A.: Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 22(3), 191–202 (1980)

    Article  Google Scholar 

  • Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House Publishers, Norwood (2005)

    Google Scholar 

  • Taflove, A., Oskooi, A., Johnson, S.G.: Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House, Norwood (2013)

    Google Scholar 

  • Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustaffsson, C., Nissen, J., Hinterleitner, A.: Efficient, large-scale archaeological prospection using true three-dimensional GPR array system. Archaeol. Prospection 17, 175–186 (2010)

    Article  Google Scholar 

  • Turk, A.S.: GPR Antennas. Chap. 3.4 In: Subsurface Sensing, Wiley Series in Microwave and Optical Engineering, pp. 83–96. Wiley, Hoboken (2011)

    Google Scholar 

  • Yarovoy, A.G., Jongh, R.V.D., Ligthart, L.P.: Ultra-wideband sensor for electromagnetic field measurements in time domain. IEE Electron. Lett. 36(20), 1679–1680 (2000a)

    Google Scholar 

  • Yarovoy, A.G., Schukin, A.D., Lightart, L.P.: Development of dielectric filled TEM horn. In: Millenium Conference on Antennas and Propagation (2000b)

    Google Scholar 

  • Yarovoy, A., Meincke, P., Dauvignac, J., Craddock, I., Sarri, A., Huang, Y.: Development of antennas for subsurface radars within ACE. In: Proceedings of the IEEE International Conference on Ultra-Wideband, pp. 299–304, 24–26 Sept 2007

    Google Scholar 

  • Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  • van Coevorden, C., Bretones, A., Pantoja, M., Ruiz, F., Garcia, S., Martin, R.: GA design of a thin-wire bow-tie antenna for GPR applications. IEEE Trans. Geosci. Remote Sens. 44(4), 1004–1010 (2006)

    Article  Google Scholar 

  • Warhus, J.P., Mast, J.E., Nelson, S.D., Johansson, E.M.: Ground-penetrating imaging radar development for bridge deck and road bed inspection. U.S. Department of Energy by the Lawrence Livermore National Laboratory, California (Contract W-7405-Eng-48), pp. 1–16 (1993)

    Google Scholar 

  • Warren, C.: Numerical modelling of high-frequency ground-penetrating radar antennas. Ph.D. thesis, School of Engineering, The University of Edinburgh, Edinburgh (2009)

    Google Scholar 

  • Warren, C., Giannopoulos, A.: Creating FDTD models of commercial GPR antennas using Taguchi’s optimisation method. Geophysics. 76, Article ID G37 (2011)

    Google Scholar 

  • Warren, C., Chivaridzo, N., Giannopoulos, A.: Radiation characteristics of a high-frequency antenna in different dielectric environments. In: Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), pp. 767–772, Oct 2014

    Google Scholar 

  • Zhou, B., Cui, T.J.: Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 10, 326–329 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are grateful to COST (European COoperation in Science and Technology) for funding the Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar,” supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Pajewski .

Editor information

Editors and Affiliations

Appendix—List of Companies Manufacturing and Offering Ground Penetrating Radars

Appendix—List of Companies Manufacturing and Offering Ground Penetrating Radars

The following is a list of companies associated with the manufacturing and supply of GPR equipment. No endorsement is implied by the inclusion of these companies in the list.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pajewski, L., Tosti, F., Kusayanagi, W. (2015). Antennas for GPR Systems. In: Benedetto, A., Pajewski, L. (eds) Civil Engineering Applications of Ground Penetrating Radar. Springer Transactions in Civil and Environmental Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-04813-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04813-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04812-3

  • Online ISBN: 978-3-319-04813-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics